RESUMEN
In their paper, using zebrafish models, Gioacchino et al. have demonstrated the GATA2 haploinsufficiency, the genetic hallmark of GATA2 deficiency syndrome, promotes erythroid and myeloid cytopenia, and have discovered a self-regulatory mechanism to compensate GATA2 levels and protein function. Commentary on: Gioacchino et al. GATA2 heterozygosity causes an epigenetic feedback mechanism resulting in myeloid and erythroid dysplasia. Br J Haematol 2024;205:580-593.
Asunto(s)
Deficiencia GATA2 , Factor de Transcripción GATA2 , Pez Cebra , Deficiencia GATA2/genética , Animales , Pez Cebra/genética , Humanos , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/deficiencia , Haploinsuficiencia , Modelos Animales de Enfermedad , Epigénesis GenéticaRESUMEN
The DExD/H-box RNA helicase DHX34 is a nonsense-mediated decay (NMD) factor that together with core NMD factors coregulates NMD targets in nematodes and in vertebrates. Here, we show that DHX34 is also associated with the human spliceosomal catalytic C complex. Mapping of DHX34 endogenous binding sites using cross-linking immunoprecipitation (CLIP) revealed that DHX34 is preferentially associated with pre-mRNAs and locates at exon-intron boundaries. Accordingly, we observed that DHX34 regulates a large number of alternative splicing (AS) events in mammalian cells in culture, establishing a dual role for DHX34 in both NMD and pre-mRNA splicing. We previously showed that germline DHX34 mutations associated to familial myelodysplasia (MDS)/acute myeloid leukemia (AML) predisposition abrogate its activity in NMD. Interestingly, we observe now that DHX34 regulates the splicing of pre-mRNAs that have been linked to AML/MDS predisposition. This is consistent with silencing experiments in hematopoietic stem/progenitor cells (HSPCs) showing that loss of DHX34 results in differentiation blockade of both erythroid and myeloid lineages, which is a hallmark of AML development. Altogether, these data unveil new cellular functions of DHX34 and suggest that alterations in the levels and/or activity of DHX34 could contribute to human disease.
Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Empalme Alternativo , Animales , Humanos , Leucemia Mieloide Aguda/genética , Mamíferos/genética , Síndromes Mielodisplásicos/genética , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas/genética , ARN Helicasas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/genéticaRESUMEN
The implementation of whole genome sequencing and large somatic gene panels in haematological malignancies is identifying an increasing number of individuals with either potential or confirmed germline predisposition to haematological malignancy. There are currently no national or international best practice guidelines with respect to management of carriers of such variants or of their at-risk relatives. To address this gap, the UK Cancer Genetics Group (UKCGG), CanGene-CanVar and the NHS England Haematological Oncology Working Group held a workshop over two days on 28-29th April 2022, with the aim of establishing consensus guidelines on relevant clinical and laboratory pathways. The workshop focussed on the management of disease-causing germline variation in the following genes: DDX41, CEBPA, RUNX1, ANKRD26, ETV6, GATA2. Using a pre-workshop survey followed by structured discussion and in-meeting polling, we achieved consensus for UK best practice in several areas. In particular, high consensus was achieved on issues regarding standardised reporting, variant classification, multidisciplinary team working and patient support. The best practice recommendations from this meeting may be applicable to an expanding number of other genes in this setting.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias Hematológicas , Humanos , Medicina Estatal , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Mutación de Línea Germinal , Inglaterra , Células GerminativasRESUMEN
Inherited bone marrow failure (BMF) syndromes are a heterogeneous group of diseases characterized by defective hematopoiesis and often predisposing to myelodysplastic syndrome (MDS) and acute myelogenous leukemia. We have studied a large family consisting of several affected individuals with hematologic abnormalities, including one family member who died of acute leukemia. By whole-exome sequencing, we identified a novel frameshift variant in the ubiquitously expressed transcription factor specificity protein 1 (SP1). This heterozygous variant (c.1995delA) truncates the canonical Sp1 molecule in the highly conserved C-terminal DNA-binding zinc finger domains. Transcriptomic analysis and gene promoter characterization in patients' blood revealed a hypermorphic effect of this Sp1 variant, triggering superactivation of Sp1-mediated transcription and driving significant up-regulation of Sp1 target genes. This familial genetic study indicates a central role for Sp1 in causing autosomal dominant transmission of BMF, thereby confirming its critical role in hematopoiesis in humans.
Asunto(s)
Trastornos de Fallo de la Médula Ósea/genética , Mutación del Sistema de Lectura/genética , Factor de Transcripción Sp1/genética , Transcripción Genética/genética , Femenino , Humanos , Masculino , Linaje , Transcriptoma/genética , Regulación hacia Arriba/genética , Dedos de Zinc/genéticaRESUMEN
Despite the inclusion of inherited myeloid malignancies as a separate entity in the World Health Organization Classification, many established predisposing loci continue to lack functional characterization. While germline mutations in the DNA repair factor ERCC excision repair 6 like 2 (ERCC6L2) give rise to bone marrow failure and acute myeloid leukaemia, their consequences on normal haematopoiesis remain unclear. To functionally characterise the dual impact of germline ERCC6L2 loss on human primary haematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs), we challenged ERCC6L2-silenced and patient-derived cells ex vivo. Here, we show for the first time that ERCC6L2-deficiency in HSPCs significantly impedes their clonogenic potential and leads to delayed erythroid differentiation. This observation was confirmed by CIBERSORTx RNA-sequencing deconvolution performed on ERCC6L2-silenced erythroid-committed cells, which demonstrated higher proportions of polychromatic erythroblasts and reduced orthochromatic erythroblasts versus controls. In parallel, we demonstrate that the consequences of ERCC6L2-deficiency are not limited to HSPCs, as we observe a striking phenotype in patient-derived and ERCC6L2-silenced MSCs, which exhibit enhanced osteogenesis and suppressed adipogenesis. Altogether, our study introduces a valuable surrogate model to study the impact of inherited myeloid mutations and highlights the importance of accounting for the influence of germline mutations in HSPCs and their microenvironment.
Asunto(s)
Médula Ósea , Eritropoyesis , Humanos , Eritropoyesis/genética , Mutación de Línea Germinal , Reparación del ADN/genética , Células Germinativas , ADN Helicasas/genéticaRESUMEN
Biallelic variants in the ERCC excision repair 6 like 2 gene (ERCC6L2) are known to cause bone marrow failure (BMF) due to defects in DNA repair and mitochondrial function. Here, we report on eight cases of BMF from five families harboring biallelic variants in ERCC6L2, two of whom present with myelodysplasia. We confirm that ERCC6L2 patients' lymphoblastoid cell lines (LCLs) are hypersensitive to DNA-damaging agents that specifically activate the transcription coupled nucleotide excision repair (TCNER) pathway. Interestingly, patients' LCLs are also hypersensitive to transcription inhibitors that interfere with RNA polymerase II (RNA Pol II) and display an abnormal delay in transcription recovery. Using affinity-based mass spectrometry we found that ERCC6L2 interacts with DNA-dependent protein kinase (DNA-PK), a regulatory component of the RNA Pol II transcription complex. Chromatin immunoprecipitation PCR studies revealed ERCC6L2 occupancy on gene bodies along with RNA Pol II and DNA-PK. Patients' LCLs fail to terminate transcript elongation accurately upon DNA damage and display a significant increase in nuclear DNA-RNA hybrids (R loops). Collectively, we conclude that ERCC6L2 is involved in regulating RNA Pol II-mediated transcription via its interaction with DNA-PK to resolve R loops and minimize transcription-associated genome instability. The inherited BMF syndrome caused by biallelic variants in ERCC6L2 can be considered as a primary transcription deficiency rather than a DNA repair defect.
Asunto(s)
Alelos , Enfermedades de la Médula Ósea/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , Enfermedades Genéticas Congénitas/metabolismo , Inestabilidad Genómica , Transcripción Genética , Células A549 , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/patología , ADN Helicasas/genética , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Células HeLa , Humanos , Masculino , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , SíndromeRESUMEN
Modern management of acute myeloid leukaemia (AML) relies on the integration of phenotypic and genetic data to assign classification, establish prognosis, enhance monitoring and guide treatment. The prism through which we can now disperse a patient's leukaemia, interpret and apply our understanding has fundamentally changed since the completion of the first whole-genome sequencing (WGS) of an AML patient in 2008 and where possible, many clinicians would now prefer to delay treatment decisions until the karyotype and genetic status of a new patient is known. The success of global sequencing initiatives such as The Cancer Genome Atlas (TCGA) have brought us significantly closer to cataloguing the full spectrum of coding mutations involved in human malignancy. Indeed, genetic capability has raced ahead of our capacity to apply much of this knowledge into clinical practice and we are in the peculiar position of having routine access to genetic information on an individual patient's leukaemia that cannot be reliably interpreted or utilised. This is a measure of how rapid the progress has been, and this rate of change is likely to continue into the foreseeable future as research intensifies on the non-coding genome and the epigenome, as we scrutinise disease at a single cell level, and as initiatives like Beat AML and the Harmony Alliance progress. In this review, we will examine how interrogation of the coding genome is revolutionising our understanding of AML and improving our ability to underscore differences between paediatric and adult onset, sporadic and inherited forms of disease. We will look at how this knowledge is informing improvements in outcome prediction and the development of novel treatments, bringing us a step closer to personalised therapy for myeloid malignancy.
Asunto(s)
Bases de Datos Genéticas , Epigenoma , Genoma Humano , Leucemia Mieloide Aguda/genética , Mutación , Secuenciación Completa del Genoma , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapiaRESUMEN
Root-knot nematodes (RKNs) induce inside the vascular cylinder the giant cells (GCs) embedded in the galls. The distinctive gene repression in early-developing GCs could be facilitated by small RNAs (sRNA) such as miRNAs, and/or epigenetic mechanisms mediated by 24nt-sRNAs, rasiRNAs and 21-22nt-sRNAs. Therefore, the sRNA-population together with the role of the miR390/TAS3/ARFs module were studied during early gall/GC formation. Three sRNA libraries from 3-d-post-inoculation (dpi) galls induced by Meloidogyne javanica in Arabidopsis and three from uninfected root segments were sequenced following Illumina-Solexa technology. pMIR390a::GUS and pTAS3::GUS lines were assayed for nematode-dependent promoter activation. A sensor line indicative of TAS3-derived tasiRNAs binding to the ARF3 sequence (pARF3:ARF3-GUS) together with a tasiRNA-resistant ARF3 line (pARF3:ARF3m-GUS) were used for functional analysis. The sRNA population showed significant differences between galls and controls, with high validation rate and correspondence with their target expression: 21-nt sRNAs corresponding mainly to miRNAs were downregulated, whilst 24-nt-sRNAs from the rasiRNA family were mostly upregulated in galls. The promoters of MIR390a and TAS3, active in galls, and the pARF3:ARF3-GUS line, indicated a role of TAS3-derived-tasiRNAs in galls. The regulatory module miR390/TAS3 is necessary for proper gall formation possibly through auxin-responsive factors, and the abundance of 24-nt sRNAs (mostly rasiRNAs) constitutes a gall hallmark.
Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Tumores de Planta/parasitología , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo , Animales , Arabidopsis/parasitología , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Genoma de Planta , Glucuronidasa/metabolismo , MicroARNs/genética , Nucleótidos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Raíces de Plantas/genética , Tumores de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Secuencias Repetitivas de Ácidos Nucleicos/genética , TylenchoideaAsunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Linfoma de Células B Grandes Difuso , Neoplasias Primarias Secundarias , Adulto , Aloinjertos , Niño , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/etiología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Masculino , Neoplasias Primarias Secundarias/tratamiento farmacológico , Neoplasias Primarias Secundarias/etiología , Neoplasias Primarias Secundarias/genética , Neoplasias Primarias Secundarias/patologíaRESUMEN
Identification of specific and therapeutically actionable vulnerabilities, ideally present across multiple mutational backgrounds, is needed to improve acute myeloid leukemia (AML) patients' outcomes. We identify stearoyl-CoA desaturase (SCD), the key enzyme in fatty acid (FA) desaturation, as prognostic of patients' outcomes and, using the clinical-grade inhibitor SSI-4, show that SCD inhibition (SCDi) is a therapeutic vulnerability across multiple AML models in vitro and in vivo. Multiomic analysis demonstrates that SCDi causes lipotoxicity, which induces AML cell death via pleiotropic effects. Sensitivity to SCDi correlates with AML dependency on FA desaturation regardless of mutational profile and is modulated by FA biosynthesis activity. Finally, we show that lipotoxicity increases chemotherapy-induced DNA damage and standard chemotherapy further sensitizes AML cells to SCDi. Our work supports developing FA desaturase inhibitors in AML while stressing the importance of identifying predictive biomarkers of response and biologically validated combination therapies to realize their full therapeutic potential.
Asunto(s)
Ácidos Grasos , Leucemia Mieloide Aguda , Estearoil-CoA Desaturasa , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Humanos , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Ratones , Animales , Pronóstico , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Daño del ADN/efectos de los fármacosRESUMEN
Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities have particularly adverse prognosis. For these patients, targeted therapies have not yet made a significant clinical impact. To understand the molecular landscape of poor prognosis AML we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, phosphoproteomic and drug response phenotypic levels. These data were complemented with transcriptomics analysis for 39 cases. Data integration highlighted a phosphoproteomics signature that define two biologically distinct groups of KMT2A rearranged leukaemia, which we term MLLGA and MLLGB. MLLGA presented increased DOT1L phosphorylation, HOXA gene expression, CDK1 activity and phosphorylation of proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and no KMT2A rearranged samples. MLLGA was particularly sensitive to 15 compounds including genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases were mainly represented in a third group closer to MLLGA than to MLLGB. The expression of IMPDH2 and multiple nucleolar proteins was higher in MLLGA and correlated with the response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the nucleolar activity in sensitivity to treatment. In summary, our multilayer molecular profiling of AML with poor prognosis and KMT2A-MLLT3 karyotypes identified a phosphoproteomics signature that defines two biologically and phenotypically distinct groups of KMT2A rearranged leukaemia. These data provide a rationale for the potential development of specific therapies for AML patients characterised by the MLLGA phosphoproteomics signature identified in this study.
Asunto(s)
Leucemia Mieloide Aguda , Proteómica , Humanos , Reordenamiento Génico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/genética , FenotipoRESUMEN
Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.
Asunto(s)
Neoplasias Hematológicas , Leucemia , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Neoplasias Hematológicas/genética , Mutación de Línea Germinal , ARN Helicasas DEAD-box/genética , Carcinogénesis , Células Germinativas , Factor de Transcripción GATA2/genéticaRESUMEN
The disruption of RUNX1 function is one of the main mechanisms of disease observed in hematopoietic malignancies and the description of novel genetic events that lead to a RUNX1 loss of function has been accelerated with the development of genomic technologies. Here we describe the molecular characterization of a new t(4;21)(q21;q22) in a de novo myelodysplastic syndrome that resulted in the deletion of the RUNX1 gene. We demonstrated by quantitative real-time RT-PCR an almost complete depletion of the expression of the RUNX1 gene in our t(4;21) case compared with CD34(+) cells that was independent of mutation or DNA methylation. More importantly, we explored and confirmed the possibility that this abrogation also prevented transactivation of RUNX1 target genes, perhaps confirming the genetic origin of the thrombocytopenia and the myelodysplastic features observed in our patient, and certainly mimicking what has been observed in the presence of the RUNX1/ETO fusion protein.
Asunto(s)
Expresión Génica , Síndromes Mielodisplásicos/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Translocación Genética , Bandeo Cromosómico , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 4 , Humanos , Masculino , Persona de Mediana Edad , Proteína 1 Compañera de Translocación de RUNX1RESUMEN
Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low 2-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols to deplete LSCs and toxicity of therapy toward healthy hematopoietic cells. We studied the role of cyclin-dependent kinase regulatory subunit 1 (CKS1)-dependent protein degradation in primary human AML and healthy hematopoiesis xenograft models in vivo. Using a small-molecule inhibitor (CKS1i), we demonstrate a dual role for CKS1-dependent protein degradation in reducing patient-derived AML blasts in vivo and, importantly, depleting LSCs, whereas inhibition of CKS1 has the opposite effect on normal hematopoiesis, protecting normal hematopoietic stem cells from chemotherapeutic toxicity. Proteomic analysis of responses to CKS1i in our patient-derived xenograft mouse model demonstrate that inhibition of CKS1 in AML leads to hyperactivation of RAC1 and accumulation of lethal reactive oxygen species, whereas healthy hematopoietic cells enter quiescence in response to CKS1i, protecting hematopoietic stem cells. Together, these findings demonstrate that CKS1-dependent proteostasis is a key vulnerability in malignant stem cell biology.
Asunto(s)
Quinasas CDC2-CDC28 , Leucemia Mieloide Aguda , Animales , Quinasas CDC2-CDC28/metabolismo , Quinasas CDC2-CDC28/farmacología , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Células Madre Neoplásicas , ProteómicaRESUMEN
Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.