Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(33): 5918-5935, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37507231

RESUMEN

The ventromedial hypothalamus (VMH) is a functionally heterogeneous nucleus critical for systemic energy, glucose, and lipid balance. We showed previously that the metabotropic glutamate receptor 5 (mGluR5) plays essential roles regulating excitatory and inhibitory transmission in SF1+ neurons of the VMH and facilitating glucose and lipid homeostasis in female mice. Although mGluR5 is also highly expressed in VMH astrocytes in the mature brain, its role there influencing central metabolic circuits is unknown. In contrast to the glucose intolerance observed only in female mice lacking mGluR5 in VMH SF1 neurons, selective depletion of mGluR5 in VMH astrocytes enhanced glucose tolerance without affecting food intake or body weight in both adult female and male mice. The improved glucose tolerance was associated with elevated glucose-stimulated insulin release. Astrocytic mGluR5 male and female mutants also exhibited reduced adipocyte size and increased sympathetic tone in gonadal white adipose tissue. Diminished excitatory drive and synaptic inputs onto VMH Pituitary adenylate cyclase-activating polypeptide (PACAP+) neurons and reduced activity of these cells during acute hyperglycemia underlie the observed changes in glycemic control. These studies reveal an essential role of astrocytic mGluR5 in the VMH regulating the excitatory drive onto PACAP+ neurons and activity of these cells facilitating glucose homeostasis in male and female mice.SIGNIFICANCE STATEMENT Neuronal circuits within the VMH play chief roles in the regulation of whole-body metabolic homeostasis. It remains unclear how astrocytes influence neurotransmission in this region to facilitate energy and glucose balance control. Here, we explored the role of the metabotropic glutamate receptor, mGluR5, using a mouse model with selective depletion of mGluR5 from VMH astrocytes. We show that astrocytic mGluR5 critically regulates the excitatory drive and activity of PACAP-expressing neurons in the VMH to control glucose homeostasis in both female and male mice. Furthermore, mGluR5 in VMH astrocytes influences adipocyte size and sympathetic tone in white adipose tissue. These studies provide novel insight toward the importance of hypothalamic astrocytes participating in central circuits regulating peripheral metabolism.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptor del Glutamato Metabotropico 5 , Animales , Femenino , Masculino , Astrocitos/metabolismo , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Lípidos , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Ratones
2.
Proc Natl Acad Sci U S A ; 117(32): 19566-19577, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719118

RESUMEN

The ventromedial hypothalamus (VMH) plays chief roles regulating energy and glucose homeostasis and is sexually dimorphic. We discovered that expression of metabotropic glutamate receptor subtype 5 (mGluR5) in the VMH is regulated by caloric status in normal mice and reduced in brain-derived neurotrophic factor (BDNF) mutants, which are severely obese and have diminished glucose balance control. These findings led us to investigate whether mGluR5 might act downstream of BDNF to critically regulate VMH neuronal activity and metabolic function. We found that mGluR5 depletion in VMH SF1 neurons did not affect energy balance regulation. However, it significantly impaired insulin sensitivity, glycemic control, lipid metabolism, and sympathetic output in females but not in males. These sex-specific deficits are linked to reductions in intrinsic excitability and firing rate of SF1 neurons. Abnormal excitatory and inhibitory synapse assembly and elevated expression of the GABAergic synthetic enzyme GAD67 also cooperate to decrease and potentiate the synaptic excitatory and inhibitory tone onto mutant SF1 neurons, respectively. Notably, these alterations arise from disrupted functional interactions of mGluR5 with estrogen receptors that switch the normally positive effects of estrogen on SF1 neuronal activity and glucose balance control to paradoxical and detrimental. The collective data inform an essential central mechanism regulating metabolic function in females and underlying the protective effects of estrogen against metabolic disease.


Asunto(s)
Glucemia/metabolismo , Estrógenos/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Metabolismo Energético , Femenino , Glutamato Descarboxilasa/metabolismo , Homeostasis , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Mutantes , Red Nerviosa , Inhibición Neural , Neuronas/metabolismo , Neuronas/fisiología , Receptor del Glutamato Metabotropico 5/genética , Receptores de Estrógenos/metabolismo , Factores Sexuales , Transducción de Señal , Factor Esteroidogénico 1/metabolismo , Sistema Nervioso Simpático/metabolismo , Transmisión Sináptica , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo
3.
J Neurosci ; 34(2): 554-65, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403154

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, are critical components of the neural circuitry controlling appetite and body weight. Diminished BDNF signaling in mice results in severe hyperphagia and obesity. In humans, BDNF haploinsufficiency and the functional Bdnf Val66Met polymorphism have been linked to elevated food intake and body weight. The mechanisms underlying this dysfunction are poorly defined. We demonstrate a chief role of α2δ-1, a calcium channel subunit and thrombospondin receptor, in triggering overeating in mice with central BDNF depletion. We show reduced α2δ-1 cell-surface expression in the BDNF mutant ventromedial hypothalamus (VMH), an energy balance-regulating center. This deficit contributes to the hyperphagia exhibited by BDNF mutant mice because selective inhibition of α2δ-1 by gabapentin infusion into wild-type VMH significantly increases feeding and body weight gain. Importantly, viral-mediated α2δ-1 rescue in BDNF mutant VMH significantly mitigates their hyperphagia, obesity, and liver steatosis and normalizes deficits in glucose homeostasis. Whole-cell recordings in BDNF mutant VMH neurons revealed normal calcium currents but reduced frequency of EPSCs. These results suggest calcium channel-independent effects of α2δ-1 on feeding and implicate α2δ-1-thrombospondin interactions known to facilitate excitatory synapse assembly. Our findings identify a central mechanism mediating the inhibitory effects of BDNF on feeding. They also demonstrate a novel and critical role for α2δ-1 in appetite control and suggest a mechanism underlying weight gain in humans treated with gabapentinoid drugs.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/deficiencia , Canales de Calcio/metabolismo , Conducta Alimentaria/fisiología , Hipotálamo/metabolismo , Obesidad/metabolismo , Animales , Western Blotting , Antígenos CD36/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Mutantes , Neuronas/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
J Neurosci ; 33(39): 15567-77, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24068823

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal activity, neurogenesis, and depressive-like behaviors; however, downstream effectors by which BDNF exerts these varying actions remain to be determined. Here we reveal that BDNF induces long-lasting enhancements in the efficacy of synaptic inhibition by stabilizing γ2 subunit-containing GABA(A) receptors (GABA(A)Rs) at the cell surface, leading to persistent reductions in neuronal excitability. This effect is dependent upon enhanced phosphorylation of tyrosines 365 and 367 (Y365/7) in the GABA(A)R γ2 subunit as revealed using mice in which these residues have been mutated to phenyalanines (Y365/7F). Heterozygotes for this mutation exhibit an antidepressant-like phenotype, as shown using behavioral-despair models of depression. In addition, heterozygous Y365/7F mice show increased levels of hippocampal neurogenesis, which has been strongly connected with antidepressant action. Both the antidepressant phenotype and the increased neurogenesis seen in these mice are insensitive to further modulation by BDNF, which produces robust antidepressant-like activity and neurogenesis in wild-type mice. Collectively, our results suggest a critical role for GABA(A)R γ2 subunit Y365/7 phosphorylation and function in regulating the effects of BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Depresión/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Depresión/genética , Heterocigoto , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Ratones , Mutación Missense , Neurogénesis/genética , Neuronas/citología , Neuronas/fisiología , Fenotipo , Fosforilación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Receptores de GABA-A/genética , Tirosina/genética , Tirosina/metabolismo
5.
Am J Physiol Endocrinol Metab ; 306(12): E1418-30, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24780611

RESUMEN

Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC.


Asunto(s)
Adiponectina/farmacología , Conservadores de la Densidad Ósea/farmacología , Médula Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Proteínas Recombinantes/farmacología , Adiponectina/antagonistas & inhibidores , Adiponectina/química , Adiponectina/genética , Adiposidad/efectos de los fármacos , Animales , Conservadores de la Densidad Ósea/administración & dosificación , Conservadores de la Densidad Ósea/antagonistas & inhibidores , Conservadores de la Densidad Ósea/química , Médula Ósea/metabolismo , Huesos/diagnóstico por imagen , Huesos/metabolismo , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Conformación Proteica , Radiografía , Distribución Aleatoria , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química
6.
Pediatr Res ; 76(4): 363-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25003911

RESUMEN

BACKGROUND: Premature infants are at risk for persistent neurodevelopmental impairment. Children born preterm often exhibit reduced hippocampal volumes that correlate with deficits in working memory. Perinatal inflammation is associated with preterm birth and brain abnormalities. Here we examine the effects of postnatal systemic inflammation on the developing hippocampus in mice. METHODS: Pups received daily intraperitoneal injections of lipopolysaccharide (LPS) or saline between days 3 and 13. Ex vivo magnetic resonance imaging (MRI) and microscopic analysis of brain tissue was performed on day 14. Behavioral testing was conducted at 8-9 wk of age. RESULTS: MR and microscopic analysis revealed a 15-20% reduction in hippocampal volume in LPS-treated mice compared with controls. Behavioral testing revealed deficits in hippocampal-related tasks in LPS-treated animals. Adult mice exposed to LPS during the postnatal period were unable to select a novel environment when re-placed within a 1-min delay, were less able to remember a familiar object after a 1-h delay, and had impaired retention of associative fear learning after 24 h. CONCLUSION: Systemic inflammation sustained during the postnatal period contributes to reduced hippocampal volume and deficits in hippocampus-dependent working memory. These findings support the novel and emerging concept that sustained systemic inflammation contributes to neurodevelopmental impairment among preterm infants.


Asunto(s)
Hipocampo/patología , Inflamación/patología , Animales , Animales Recién Nacidos , Conducta Animal , Cognición , Hipocampo/fisiopatología , Imagen por Resonancia Magnética , Ratones , Prueba de Desempeño de Rotación con Aceleración Constante
7.
WIREs Mech Dis ; 16(1): e1632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37833830

RESUMEN

Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.


Asunto(s)
Astrocitos , Hipotálamo , Animales , Astrocitos/metabolismo , Hipotálamo/metabolismo , Plasticidad Neuronal/fisiología , Sistema Nervioso Central/metabolismo , Sinapsis/metabolismo , Obesidad/metabolismo
8.
Biomolecules ; 14(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38672441

RESUMEN

The global rise in obesity and related health issues, such as type 2 diabetes and cardiovascular disease, is alarming. Gaining a deeper insight into the central neural pathways and mechanisms that regulate energy and glucose homeostasis is crucial for developing effective interventions to combat this debilitating condition. A significant body of evidence from studies in humans and rodents indicates that brain-derived neurotrophic factor (BDNF) signaling plays a key role in regulating feeding, energy expenditure, and glycemic control. BDNF is a highly conserved neurotrophin that signals via the tropomyosin-related kinase B (TrkB) receptor to facilitate neuronal survival, differentiation, and synaptic plasticity and function. Recent studies have shed light on the mechanisms through which BDNF influences energy and glucose balance. This review will cover our current understanding of the brain regions, neural circuits, and cellular and molecular mechanisms underlying the metabolic actions of BDNF and TrkB.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Metabolismo Energético , Glucosa , Glicoproteínas de Membrana , Receptor trkB , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Humanos , Receptor trkB/metabolismo , Animales , Glucosa/metabolismo , Transducción de Señal , Encéfalo/metabolismo
9.
Nat Metab ; 4(5): 627-643, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35501599

RESUMEN

Brain-derived neurotrophic factor (BDNF) is essential for maintaining energy and glucose balance within the central nervous system. Because the study of its metabolic actions has been limited to effects in neuronal cells, its role in other cell types within the brain remains poorly understood. Here we show that astrocytic BDNF signaling within the ventromedial hypothalamus (VMH) modulates neuronal activity in response to changes in energy status. This occurs via the truncated TrkB.T1 receptor. Accordingly, either fasting or central BDNF depletion enhances astrocytic synaptic glutamate clearance, thereby decreasing neuronal activity in mice. Notably, selective depletion of TrkB.T1 in VMH astrocytes blunts the effects of energy status on excitatory transmission, as well as on responses to leptin, glucose and lipids. These effects are driven by increased astrocytic invasion of excitatory synapses, enhanced glutamate reuptake and decreased neuronal activity. We thus identify BDNF/TrkB.T1 signaling in VMH astrocytes as an essential mechanism that participates in energy and glucose homeostasis.


Asunto(s)
Astrocitos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Animales , Astrocitos/metabolismo , Glucosa/metabolismo , Glutamatos/metabolismo , Homeostasis , Hipotálamo/metabolismo , Ratones
10.
J Neurosci ; 30(7): 2533-41, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20164338

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, play prominent roles in food intake regulation through central mechanisms. However, the neural circuits underlying their anorexigenic effects remain largely unknown. We showed previously that selective BDNF depletion in the ventromedial hypothalamus (VMH) of mice resulted in hyperphagic behavior and obesity. Here, we sought to ascertain whether its regulatory effects involved the mesolimbic dopamine system, which mediates motivated and reward-seeking behaviors including consumption of palatable food. We found that expression of BDNF and TrkB mRNA in the ventral tegmental area (VTA) of wild-type mice was influenced by consumption of palatable, high-fat food (HFF). Moreover, amperometric recordings in brain slices of mice depleted of central BDNF uncovered marked deficits in evoked release of dopamine in the nucleus accumbens (NAc) shell and dorsal striatum but normal secretion in the NAc core. Mutant mice also exhibited dramatic increases in HFF consumption, which were exacerbated when access to HFF was restricted. However, mutants displayed enhanced responses to D(1) receptor agonist administration, which normalized their intake of HFF in a 4 h food intake test. Finally, in contrast to deletion of Bdnf in the VMH of mice, which resulted in increased intake of standard chow, BDNF depletion in the VTA elicited excessive intake of HFF but not of standard chow and increased body weights under HFF conditions. Our findings indicate that the effects of BDNF on eating behavior are neural substrate-dependent and that BDNF influences hedonic feeding via positive modulation of the mesolimbic dopamine system.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Dopamina/metabolismo , Preferencias Alimentarias/fisiología , Sistema Límbico/metabolismo , Recompensa , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Cromatografía Líquida de Alta Presión/métodos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Grasas de la Dieta/administración & dosificación , Agonistas de Dopamina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Técnicas Electroquímicas/métodos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Sistema Límbico/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , ARN Mensajero/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Factores de Tiempo
11.
Int J Neuropsychopharmacol ; 14(3): 347-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20604989

RESUMEN

Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean 994±186 pg/ml) were comparable to previously reported values in humans. We demonstrated positive correlations between whole-blood BDNF levels and hippocampal BDNF levels in rats (r2=0.44, p=0.025) and between plasma BDNF and hippocampal BDNF in pigs (r2=0.41, p=0.025). Moreover, we found a significant positive correlation between frontal cortex and hippocampal BDNF levels in mice (r2=0.81, p=0.0139). Our data support the view that measures of blood and plasma BDNF levels reflect brain-tissue BDNF levels.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/sangre , Encéfalo/metabolismo , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Ratas , Reproducibilidad de los Resultados , Especificidad de la Especie , Porcinos
12.
Nat Neurosci ; 10(8): 1029-37, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17618281

RESUMEN

A single exposure to cocaine rapidly induces the brief activation of several immediate early genes, but the role of such short-term regulation in the enduring consequences of cocaine use is poorly understood. We found that 4 h of intravenous cocaine self-administration in rats induced a transient increase in brain-derived neurotrophic factor (BDNF) and activation of TrkB-mediated signaling in the nucleus accumbens (NAc). Augmenting this dynamic regulation with five daily NAc BDNF infusions caused enduring increases in cocaine self-administration, and facilitated relapse to cocaine seeking in withdrawal. In contrast, neutralizing endogenous BDNF regulation with intra-NAc infusions of antibody to BDNF subsequently reduced cocaine self-administration and attenuated relapse. Using localized inducible BDNF knockout in mice, we found that BDNF originating from NAc neurons was necessary for maintaining increased cocaine self-administration. These findings suggest that dynamic induction and release of BDNF from NAc neurons during cocaine use promotes the development and persistence of addictive behavior.


Asunto(s)
Anestésicos Locales/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cocaína/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Refuerzo en Psicología , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Factor Neurotrófico Derivado del Encéfalo/genética , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/citología , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Autoadministración/métodos , Factores de Tiempo
13.
ACS Cent Sci ; 7(3): 454-466, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33791428

RESUMEN

The gut-derived incretin hormone, glucagon-like peptide-1 (GLP1), plays an important physiological role in attenuating post-prandial blood glucose excursions in part by amplifying pancreatic insulin secretion. Native GLP1 is rapidly degraded by the serine protease, dipeptidyl peptidase-4 (DPP4); however, enzyme-resistant analogues of this 30-amino-acid peptide provide an effective therapy for type 2 diabetes (T2D) and can curb obesity via complementary functions in the brain. In addition to its medical relevance, the incretin system provides a fertile arena for exploring how to better separate agonist function at cognate receptors versus susceptibility of peptides to DPP4-induced degradation. We have discovered that novel chemical decorations can make GLP1 and its analogues completely DPP4 resistant while fully preserving GLP1 receptor activity. This strategy is also applicable to other therapeutic ligands, namely, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-2 (GLP2), targeting the secretin family of receptors. The versatility of the approach offers hundreds of active compounds based on any template that target these receptors. These observations should allow for rapid optimization of pharmacological properties and because the appendages are in a position crucial to receptor stimulation, they proffer the possibility of conferring "biased" signaling and in turn minimizing side effects.

14.
Learn Mem ; 16(12): 756-60, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19926781

RESUMEN

Anatomically selective medial prefrontal cortical projections regulate the extinction of stimulus-reinforcement associations, but the mechanisms underlying extinction of an instrumental response for reward are less well-defined and may involve structures that regulate goal-directed action. We show brain-derived neurotrophic factor (bdnf) knock-down in the prelimbic, but not orbitofrontal, cortex accelerates the initial extinction of instrumental responding for food and reduces striatal BDNF protein. When knock-down mice were provided with alternative response options to readily obtain reinforcement, extinction of the previously reinforced response was unaffected, consistent with the hypothesis that the prelimbic cortex promotes instrumental action, particularly when reinforcement is uncertain or unavailable.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Condicionamiento Operante/fisiología , Extinción Psicológica/fisiología , Corteza Prefrontal/fisiología , Glándulas Suprarrenales/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Vectores Genéticos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neostriado/metabolismo , Plasticidad Neuronal/fisiología , Técnicas Estereotáxicas
15.
Endocrinology ; 161(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32337532

RESUMEN

The thrombospondin receptor alpha2delta-1 (α2δ-1) plays essential roles promoting the activity of SF1 neurons in the ventromedial hypothalamus (VMH) and mediating glucose and lipid metabolism in male mice. Its role in the VMH of female mice remains to be defined, especially considering that this hypothalamic region is sexually dimorphic. We found that α2δ-1 depletion in SF1 neurons differentially affects glucose and lipid balance control and sympathetic tone in females compared to males. Mutant females show a modest increase in relative body weight gain when fed a high-fat diet (HFD) and normal energy expenditure, indicating that α2δ-1 is not a critical regulator of energy balance in females, similar to males. However, diminished α2δ-1 function in the VMH leads to enhanced glycemic control in females fed a chow diet, in contrast to the glucose intolerance reported previously in mutant males. Interestingly, the effects of α2δ-1 on glucose balance in females are influenced by diet. Accordingly, females but not males lacking α2δ-1 exhibit diminished glycemic control as well as susceptibility to hepatic steatosis when fed a HFD. Increased hepatic sympathetic tone and CD36 mRNA expression and reduced adiponectin levels underlie these diet-induced metabolic alterations in mutant females. The results indicate that α2δ-1 in VMH SF1 neurons critically regulates metabolic function through sexually dimorphic mechanisms. These findings are clinically relevant since metabolic alterations have been reported as a side effect in human patients prescribed gabapentinoid drugs, known to inhibit α2δ-1 function, for the treatment of seizure disorders, neuropathic pain, and anxiety disorders.


Asunto(s)
Glucemia , Canales de Calcio/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Núcleo Hipotalámico Ventromedial/metabolismo , Adiponectina/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético , Hígado Graso/etiología , Femenino , Gabapentina/efectos adversos , Intolerancia a la Glucosa/etiología , Control Glucémico , Masculino , Ratones , Caracteres Sexuales
16.
Mol Cell Neurosci ; 39(3): 372-83, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18718867

RESUMEN

Granule neurons generated in the adult mammalian hippocampus synaptically integrate to facilitate cognitive function and antidepressant efficacy. Here, we investigated the role of BDNF in facilitating their maturation in vivo. We found that depletion of central BDNF in mice elicited an increase in hippocampal cell proliferation without affecting cell survival or fate specification. However, new mutant neurons failed to fully mature as indicated by their lack of calbindin, reduced dendritic differentiation and an accumulation of calretinin(+) immature neurons in the BDNF mutant dentate gyrus. Furthermore, the facilitating effects of GABA(A) receptor stimulation on neurogenesis were absent in the mutants, suggesting that defects might be due to alterations in GABA signaling. Transcriptional analysis of the mutant hippocampal neurogenic region revealed increases in markers for immature neurons and decreases in neuronal differentiation facilitators. These findings demonstrate that BDNF is required for the terminal differentiation of new neurons in the adult hippocampus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular/fisiología , Hipocampo/citología , Neuronas/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Movimiento Celular , Proliferación Celular , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Receptor trkB/metabolismo , Receptores de GABA-A/metabolismo , Células Madre/citología , Células Madre/fisiología , Transcripción Genética , Ácido gamma-Aminobutírico/metabolismo
17.
J Neurosci ; 27(52): 14265-74, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18160634

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are expressed in several hypothalamic and hindbrain nuclei involved in regulating energy homeostasis, developmentally and in the adult animal. Their depletion during the fetal or early postnatal periods when developmental processes are still ongoing elicits hyperphagic behavior and obesity in mice. Whether BDNF is a chief element in appetite control in the mature brain remains controversial. The required sources of this neurotrophin are also unknown. We show that glucose administration rapidly induced BDNF mRNA expression, mediated by Bdnf promoter 1, and TrkB transcription in the ventromedial hypothalamus (VMH) of adult mice, consistent with a role of this pathway in satiety. Using viral-mediated selective knock-down of BDNF in the VMH and dorsomedial hypothalamus (DMH) of adult mice, we were able to elucidate the physiological relevance of BDNF in energy balance regulation. Site-specific mutants exhibited hyperphagic behavior and obesity but normal energy expenditure. Furthermore, intracerebroventricular administration of BDNF triggered an immediate neuronal response in multiple hypothalamic nuclei in wild-type mice, suggesting that its anorexigenic actions involve short-term mechanisms. Locomotor, aggressive, and depressive-like behaviors, all of which are associated with neural circuits involving the VMH, were not altered in VMH/DMH-specific BDNF mutants. These findings demonstrate that BDNF is an integral component of central mechanisms mediating satiety in the adult mouse and, moreover, that its synthesis in the VMH and/or DMH is required for the suppression of appetite.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/deficiencia , Eliminación de Gen , Hiperfagia/genética , Hipotálamo Medio/metabolismo , Obesidad/genética , Obesidad/patología , Animales , Conducta Animal , Peso Corporal/genética , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/fisiología , Glucosa/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hiperglucemia/genética , Hiperinsulinismo/genética , Hiperlipidemias/genética , Hipotálamo Medio/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Factores de Tiempo
18.
Cell Rep ; 21(10): 2737-2747, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212022

RESUMEN

The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1+ neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Glucosa/metabolismo , Neuronas/metabolismo , Núcleos Talámicos Ventrales/citología , Animales , Western Blotting , Canales de Calcio Tipo L/genética , Electrofisiología , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Técnica del Anticuerpo Fluorescente , Homeostasis , Lípidos , Ratones , Factores de Empalme de ARN/metabolismo
19.
Sci Rep ; 7(1): 7811, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798343

RESUMEN

A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition of glycogen synthase kinase 3ß (GSK3ß). Moreover, isoflurane affected neuronal plasticity by facilitating long-term potentiation in the hippocampus. We also found that isoflurane increased activity of the parvalbumin interneurons, and facilitated GABAergic transmission in wild type mice but not in transgenic mice with reduced TrkB expression in parvalbumin interneurons. Our findings strengthen the role of TrkB signaling in the antidepressant responses and encourage further evaluation of isoflurane as a rapid-acting antidepressant devoid of the psychotomimetic effects and abuse potential of ketamine.


Asunto(s)
Antidepresivos/administración & dosificación , Hipocampo/fisiología , Isoflurano/administración & dosificación , Receptor trkB/metabolismo , Animales , Antidepresivos/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Desamparo Adquirido , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Isoflurano/farmacología , Ketamina/farmacología , Potenciación a Largo Plazo , Masculino , Ratones , Parvalbúminas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
20.
J Neurosci ; 22(10): 4153-62, 2002 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12019333

RESUMEN

Chronic opiate exposure induces numerous neurochemical adaptations in the noradrenergic system, including upregulation of the cAMP-signaling pathway and increased expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. These adaptations are thought to compensate for opiate-mediated neuronal inhibition but also contribute to physical dependence, including withdrawal after abrupt cessation of drug exposure. Little is known about molecules that regulate the noradrenergic response to opiates. Here we report that noradrenergic locus ceruleus (LC) neurons of mice with a conditional deletion of BDNF in postnatal brain respond to chronic morphine treatment with a paradoxical downregulation of cAMP-mediated excitation and lack of dynamic regulation of TH expression. This was accompanied by a threefold reduction in opiate withdrawal symptoms despite normal antinociceptive tolerance in the BDNF-deficient mice. Although expression of TrkB, the receptor for BDNF, was high in the LC, endogenous BDNF expression was absent there and in the large majority of other noradrenergic neurons. Therefore, a BDNF-signaling pathway originating from non-noradrenergic sources is essential for opiate-induced molecular adaptations of the noradrenergic system.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Narcóticos/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Recuento de Células , Colforsina/farmacología , AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Eliminación de Gen , Genes Reporteros , Genotipo , Hibridación in Situ , Técnicas In Vitro , Integrasas/genética , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Ratones , Ratones Mutantes , Ratones Transgénicos , Narcóticos/efectos adversos , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Norepinefrina/metabolismo , Receptores Opioides mu/agonistas , Recombinación Genética , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Síndrome de Abstinencia a Sustancias , Transgenes , Tirosina 3-Monooxigenasa/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA