Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 65(4): 378-389, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34102087

RESUMEN

Excessive lung inflammation and airway epithelial damage are hallmarks of human inflammatory lung diseases, such as cystic fibrosis (CF). Enhancement of innate immunity provides protection against pathogens while reducing lung-damaging inflammation. However, the mechanisms underlying innate immunity-mediated protection in the lung remain mysterious, in part because of the lack of appropriate animal models for these human diseases. TLR5 (Toll-like receptor 5) stimulation by its specific ligand, the bacterial protein flagellin, has been proposed to enhance protection against several respiratory infectious diseases, although other cellular events, such as calcium signaling, may also control the intensity of the innate immune response. Here, we investigated the molecular events prompted by stimulation with flagellin and its role in regulating innate immunity in the lung of the pig, which is anatomically and genetically more similar to humans than rodent models. We found that flagellin treatment modulated NF-κB signaling and intracellular calcium homeostasis in airway epithelial cells. Flagellin pretreatment reduced the NF-κB nuclear translocation and the expression of proinflammatory cytokines to a second flagellin stimulus as well as to Pseudomonas aeruginosa infection. Moreover, in vivo administration of flagellin decreased the severity of P. aeruginosa-induced pneumonia. Then we confirmed these beneficial effects of flagellin in a pathological model of CF by using ex vivo precision-cut lung slices from a CF pigz model. These results provide evidence that flagellin treatment contributes to a better regulation of the inflammatory response in inflammatory lung diseases such as CF.


Asunto(s)
Flagelina/farmacología , Inflamación/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Animales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Flagelina/inmunología , Flagelina/metabolismo , Inmunidad Innata/efectos de los fármacos , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Transducción de Señal/efectos de los fármacos , Porcinos
2.
Vet Res ; 50(1): 100, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775863

RESUMEN

Epidemiological investigations implemented in wild and domestic ruminants evidenced a reservoir for Brucella in Capra ibex in the French Alps. Vaccination was considered as a possible way to control Brucella infection in this wildlife population. Twelve ibexes and twelve goats were allocated into four groups housed separately, each including six males or six non-pregnant females. Four to five animals were vaccinated and one or two animals were contact animals. Half of the animals were necropsied 45 days post-vaccination (pv), and the remaining ones at 90 days pv. Additional samples were collected 20 and 68 days pv to explore bacterial distribution in organs and humoral immunity. Neither clinical signs nor Brucella-specific lesions were observed and all vaccinated animals seroconverted. Brucella distribution and antibody profiles were highly contrasted between both species. Proportion of infected samples was significantly higher in ibex compared to goats and decreased between 45 and 90 days pv. Two male ibex presented urogenital excretion at 20 or 45 days pv. The bacterial load was higher 45 days in ibexes compared to goats, whereas it remained moderate to low 90 days pv in both species with large variability between animals. In this experiment, differences between species remained the main source of variation, with low impact of other individual factors. To conclude, multiplicative and shedding capacity of Rev.1 was much higher in ibex compared to goats within 90 days. These results provide initial information on the potential use in natura of a commercial vaccine.


Asunto(s)
Derrame de Bacterias , Vacuna contra la Brucelosis/inmunología , Brucella melitensis/fisiología , Brucelosis/veterinaria , Enfermedades de las Cabras/inmunología , Animales , Brucella melitensis/inmunología , Brucelosis/microbiología , Brucelosis/fisiopatología , Cabras , Especificidad de la Especie , Vacunación/veterinaria
3.
Vet Res ; 49(1): 72, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30045763

RESUMEN

Staphylococcus aureus is the major cause of very severe mastitis of dairy goats. The initial objective of our study was to fine-tune an experimental model of infection of the goat mammary gland with two strains of S. aureus and two lines of goats (low and high somatic cell score lines). Following the challenge, the 10 infected goats divided in two clear-cut severity groups, independently of the S. aureus strain and the goat line. Five goats developed very severe mastitis (of which four were gangrenous) characterized by uncontrolled infection (UI group), whereas the other five kept the infection under control (CI group). The outcome of the infection was determined by 18 h post-infection (hpi), as heralded by the bacterial milk concentration at 18 hpi: more than 107/mL in the UI group, about 106/mL in the CI group. Leukocyte recruitment and composition did not differ between the groups, but the phagocytic killing at 18 hpi efficiency did. Contributing factors involved milk concentrations of α-toxin and LukMF' leukotoxin, but not early expression of the genes encoding the pentraxin PTX3, the cytokines IL-1α and IL-1ß, and the chemokines IL-8 and CCL5. Concentrations of TNF-α, IFN-γ, IL-17A, and IL-22 rose sharply in the milk of UI goats when infection was out of control. The results indicate that defenses mobilized by the mammary gland at an early stage of infection were essential to prevent staphylococci from reaching critical concentrations. Staphylococcal exotoxin production appeared to be a consequent event inducing the evolution to gangrenous mastitis.


Asunto(s)
Enfermedades de las Cabras/microbiología , Cabras/genética , Mastitis/veterinaria , Selección Genética , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/fisiología , Animales , Recuento de Células/veterinaria , Femenino , Gangrena/microbiología , Gangrena/veterinaria , Mastitis/microbiología , Leche/microbiología , Infecciones Estafilocócicas/microbiología
4.
Vaccine ; 42(7): 1582-1592, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38336558

RESUMEN

Clostridioides difficile infection (CDI) is a serious healthcare-associated disease, causing symptoms such as diarrhea and pseudomembranous colitis. The major virulence factors responsible for the disease symptoms are two secreted cytotoxic proteins, TcdA and TcdB. A parenteral vaccine based on formaldehyde-inactivated TcdA and TcdB supplemented with alum adjuvant, has previously been investigated in humans but resulted in an insufficient immune response. In search for an improved response, we investigated a novel toxin inactivation method and a novel, potent adjuvant. Inactivation of toxins by metal-catalyzed oxidation (MCO) was previously shown to preserve neutralizing epitopes and to annihilate reversion to toxicity. The immunogenicity and safety of TcdA and TcdB inactivated by MCO and combined with a novel carbohydrate fatty acid monosulphate ester-based (CMS) adjuvant were investigated in rabbits. Two or three intramuscular immunizations generated high serum IgG and neutralizing antibody titers against both toxins. The CMS adjuvant increased antibody responses to both toxins while an alum adjuvant control was effective only against TcdA. Systemic safety was evaluated by monitoring body weight, body temperature, and analysis of red and white blood cell counts shortly after immunization. Local safety was assessed by histopathologic examination of the injection site at the end of the study. Body weight gain was constant in all groups. Body temperature increased up to 1 ˚C one day after the first immunization but less after the second or third immunization. White blood cell counts, and percentage of neutrophils increased one day after immunization with CMS-adjuvanted vaccines, but not with alum. Histopathology of the injection sites 42 days after the last injection did not reveal any abnormal tissue reactions. From this study, we conclude that TcdA and TcdB inactivated by MCO and combined with CMS adjuvant demonstrated promising immunogenicity and safety in rabbits and could be a candidate for a vaccine against CDI.


Asunto(s)
Compuestos de Alumbre , Toxinas Bacterianas , Compuestos de Boro , Cefalosporinas , Clostridioides difficile , Infecciones por Clostridium , Animales , Conejos , Adyuvantes Inmunológicos , Proteínas Bacterianas , Vacunas Bacterianas/efectos adversos , Peso Corporal , Infecciones por Clostridium/prevención & control , Enterotoxinas , Toxoides
5.
Poult Sci ; 102(11): 102967, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639754

RESUMEN

Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the main bacterial disease in poultry leading to significant economic losses worldwide. Antibiotic treatments favor the emergence of multidrug-resistant bacteria, and preventive measures are insufficient to control the disease. There is increasing interest in using the potential of bacteriophages, not only for phage therapy but also for prevention and biocontrol. This study aimed to evaluate the efficacy of a phage cocktail administered in ovo to prevent avian colibacillosis in chicks. When 4 different phages (REC, ESCO3, ESCO47, and ESCO58), stable under avian physiological conditions, were combined and inoculated at 17 embryogenic days (ED), they were transmitted to the newly hatched chicks. In a second trial, the 4-phage cocktail was inoculated into the allantoic fluid at ED16 and after hatch 1-day-old chicks were challenged with the O2 APEC strain BEN4358 inoculated subcutaneously. Two phages (REC and ESCO3) were still detected in the ceca of surviving chicks at the end of the experiment (7-days postinfection). Chicks that received the phages in ovo did not develop colibacillosis lesions and showed a significant decrease in intestinal BEN4358 load (8.00 × 107 CFU/g) compared to the challenged chicks (4.52 × 108 CFU/g). The majority of the reisolated bacteria from the ceca of surviving chicks had developed full resistance to ESCO3 phage, and only 3 were resistant to REC phage. The partially or complete resistance of REC phage induced a considerable cost to bacterial virulence. Here, we showed that phages inoculated in ovo can partially prevent colibacillosis in 1-wk-old chicks. The reduction in the APEC load in the gut and the decreased virulence of some resistant isolates could also contribute to control the disease.

6.
Microorganisms ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630536

RESUMEN

France has been officially free of bovine brucellosis since 2005. Nevertheless, in 2012, as the source of two human cases, a bovine outbreak due to B. melitensis biovar 3 was confirmed in the French Alpine Bargy massif, due to a spillover from wild, protected Alpine ibex (Capra ibex). In order to reduce high Brucella prevalence in the local ibex population, successive management strategies have been implemented. Lateral flow immunochromatography assay (LFIA) was thus identified as a promising on-site screening test, allowing for a rapid diagnosis far from the laboratory. This study compared a commercial LFIA for brucellosis diagnosis with the WOAH-recommended tests for small ruminants (i.e., Rose Bengal test (RBT), Complement fixation test, (CFT) and Indirect ELISA, (iELISA)). LFIA showed the same analytical sensitivity as iELISA on successive dilutions of the International Standard anti-Brucella melitensis Serum (ISaBmS) and the EU Goat Brucella Standard Serum (EUGBSS). Selectivity was estimated at 100% when vaccinated ibex sera were analyzed. When used on samples from naturally infected ibex, LFIA showed high concordance, as well as relative sensitivity and specificity (>97.25%) in comparison with RBT and CFT. This work shows high reliability and ensures a better standardization of LFIA testing for wild ruminants.

7.
Hepatol Commun ; 7(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938097

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is a zoonotic virus transmitted by pig meat and responsible for chronic hepatitis E in immunocompromised patients. It has proved challenging to reproduce this disease in its natural reservoir. We therefore aimed to develop a pig model of chronic hepatitis E to improve the characterization of this disease. METHODS: Ten pigs were treated with a tacrolimus-based regimen and intravenously inoculated with HEV. Tacrolimus trough concentration, HEV viremia, viral diversity, innate immune responses, liver histology, clinical disease and biochemical markers were monitored for 11 weeks post-infection (p.i.). RESULTS: HEV viremia persisted for 11 weeks p.i. HEV RNA was detected in the liver, small intestine, and colon at necropsy. Histological analysis revealed liver inflammation and fibrosis. Several mutations selected in the HEV genome were associated with compartmentalization in the feces and intestinal tissues, consistent with the hypothesis of extrahepatic replication in the digestive tract. Antiviral responses were characterized by a downregulation of IFN pathways in the liver, despite an upregulation of RIG-I and ISGs in the blood and liver. CONCLUSIONS: We developed a pig model of chronic hepatitis E that reproduced the major hallmarks of this disease. This model revealed a compartmentalization of HEV genomes in the digestive tract and a downregulation of innate immune responses in the liver. These original features highlight the relevance of our model for studies of the pathogenesis of chronic hepatitis E and for validating future treatments.


Asunto(s)
Hepatitis E , Humanos , Porcinos , Animales , Regulación hacia Abajo , Viremia , Tacrolimus , Inmunidad Innata/genética
8.
Biochim Biophys Acta ; 1808(6): 1716-27, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21291859

RESUMEN

Aminoglycosides are among the most potent antimicrobials to eradicate Pseudomonas aeruginosa. However, the emergence of resistance has clearly led to a shortage of treatment options, especially for critically ill patients. In the search for new antibiotics, we have synthesized derivatives of the small aminoglycoside, neamine. The amphiphilic aminoglycoside 3',4',6-tri-2-naphtylmethylene neamine (3',4',6-tri-2NM neamine) has appeared to be active against sensitive and resistant P. aeruginosa strains as well as Staphylococcus aureus strains (Baussanne et al., 2010). To understand the molecular mechanism involved, we determined the ability of 3',4',6-tri-2NM neamine to alter the protein synthesis and to interact with the bacterial membranes of P. aeruginosa or models mimicking these membranes. Using atomic force microscopy, we observed a decrease of P. aeruginosa cell thickness. In models of bacterial lipid membranes, we showed a lipid membrane permeabilization in agreement with the deep insertion of 3',4',6-tri-2NM neamine within lipid bilayer as predicted by modeling. This new amphiphilic aminoglycoside bound to lipopolysaccharides and induced P. aeruginosa membrane depolarization. All these effects were compared to those obtained with neamine, the disubstituted neamine derivative (3',6-di-2NM neamine), conventional aminoglycosides (neomycin B and gentamicin) as well as to compounds acting on lipid bilayers like colistin and chlorhexidine. All together, the data showed that naphthylmethyl neamine derivatives target the membrane of P. aeruginosa. This should offer promising prospects in the search for new antibacterials against drug- or biocide-resistant strains.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Framicetina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Unión Competitiva , Membrana Celular/química , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Framicetina/análogos & derivados , Framicetina/química , Framicetina/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Liposomas/química , Liposomas/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Estructura Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/crecimiento & desarrollo
9.
Eur J Med Chem ; 243: 114735, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36122550

RESUMEN

A series of ferrocenyl-containing γ-hydroxy-γ-lactam tetramates were prepared in 2-3 steps through ring opening-ring closure (RORC) process of γ-ylidene-tetronate derivatives in the presence of ferrocenyl alkylamines. The compounds were screened in vitro for their antiplasmodial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (W2) clones of P. falciparum, displaying activity in the range of 0.12-100 µM, with generally good resistance index. The most active ferrocene in these series exhibited IC50 equal to 0.09 µM (3D7) and 0.12 µM (W2). The low cytotoxicity of the ferrocenyl-containing γ-hydroxy-γ-lactam tetramates against Human Umbilical Vein Endothelial (HUVEC) cell line demonstrated selective antiparasitic activity. The redox properties of these ferrocene-derived tetramates were studied and physico-biochemical studies evidenced that these derivatives can exert potent antimalarial activities via a mechanism distinct from ferroquine.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Metalocenos/farmacología , Antimaláricos/química , Plasmodium falciparum , Lactamas/farmacología , Lactamas/química , Relación Estructura-Actividad , Malaria Falciparum/tratamiento farmacológico , Cloroquina/uso terapéutico
10.
Sci Rep ; 11(1): 14278, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253752

RESUMEN

The widespread failure of anthelmintic drugs against nematodes of veterinary interest requires novel control strategies. Selective treatment of the most susceptible individuals could reduce drug selection pressure but requires appropriate biomarkers of the intrinsic susceptibility potential. To date, this has been missing in livestock species. Here, we selected Welsh ponies with divergent intrinsic susceptibility (measured by their egg excretion levels) to cyathostomin infection and found that their divergence was sustained across a 10-year time window. Using this unique set of individuals, we monitored variations in their blood cell populations, plasma metabolites and faecal microbiota over a grazing season to isolate core differences between their respective responses under worm-free or natural infection conditions. Our analyses identified the concomitant rise in plasma phenylalanine level and faecal Prevotella abundance and the reduction in circulating monocyte counts as biomarkers of the need for drug treatment (egg excretion above 200 eggs/g). This biological signal was replicated in other independent populations. We also unravelled an immunometabolic network encompassing plasma beta-hydroxybutyrate level, short-chain fatty acid producing bacteria and circulating neutrophils that forms the discriminant baseline between susceptible and resistant individuals. Altogether our observations open new perspectives on the susceptibility of equids to strongylid infection and leave scope for both new biomarkers of infection and nutritional intervention.


Asunto(s)
Antihelmínticos/uso terapéutico , Biología/métodos , Biomarcadores/metabolismo , Enfermedades de los Caballos/parasitología , Recuento de Huevos de Parásitos/veterinaria , Ácido 3-Hidroxibutírico/sangre , Animales , Análisis Discriminante , Heces , Caballos , Espectroscopía de Resonancia Magnética , Metabolómica , Nematodos , Fenilalanina/sangre , Estaciones del Año
11.
Viruses ; 13(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918924

RESUMEN

Transmission of bluetongue (BT) virus serotype 8 (BTV-8) via artificial insemination of contaminated frozen semen from naturally infected bulls was investigated in two independent experiments. Healthy, BT negative heifers were hormonally synchronized and artificially inseminated at oestrus. In total, six groups of three heifers received semen from four batches derived from three bulls naturally infected with BTV-8. Each experiment included one control heifer that was not inseminated and that remained BT negative throughout. BTV viraemia and seroconversion were determined in 8 out of 18 inseminated heifers, and BTV was isolated from five of these animals. These eight heifers only displayed mild clinical signs of BT, if any at all, but six of them experienced pregnancy loss between weeks four and eight of gestation, and five of them became BT PCR and antibody positive. The other two infected heifers gave birth at term to two healthy and BT negative calves. The BT viral load varied among the semen batches used and this had a significant impact on the infection rate, the time of onset of viraemia post artificial insemination, and the gestational stage at which pregnancy loss occurred. These results, which confirm unusual features of BTV-8 infection, should not be extrapolated to infection with other BTV strains without thorough evaluation. This study also adds weight to the hypothesis that the re-emergence of BTV-8 in France in 2015 may be attributable to the use of contaminated bovine semen.


Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/transmisión , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Inseminación Artificial/veterinaria , Preservación de Semen/veterinaria , Semen/virología , Aborto Veterinario/virología , Animales , Lengua Azul/virología , Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/inmunología , Virus de la Lengua Azul/aislamiento & purificación , Bovinos , Femenino , Francia , Inseminación Artificial/efectos adversos , Masculino , Embarazo , Preservación de Semen/efectos adversos , Serogrupo
12.
Br J Pharmacol ; 178(18): 3829-3842, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33974271

RESUMEN

BACKGROUND AND PURPOSE 255: Pseudomonas aeruginosa is a main cause of ventilator-associated pneumonia (VAP) with drug-resistant bacteria. Bacteriophage therapy has experienced resurgence to compensate for the limited development of novel antibiotics. However, phage therapy is limited to a compassionate use so far, resulting from lack of adequate studies in relevant pharmacological models. We used a pig model of pneumonia caused by P. aeruginosa that recapitulates essential features of human disease to study the antimicrobial efficacy of nebulized-phage therapy. EXPERIMENTAL APPROACH: (i) Lysis kinetic assays were performed to evaluate in vitro phage antibacterial efficacy against P. aeruginosa and select relevant combinations of lytic phages. (ii) The efficacy of the phage combinations was investigated in vivo (murine model of P. aeruginosa lung infection). (iii) We determined the optimal conditions to ensure efficient phage delivery by aerosol during mechanical ventilation. (iv) Lung antimicrobial efficacy of inhaled-phage therapy was evaluated in pigs, which were anaesthetized, mechanically ventilated and infected with P. aeruginosa. KEY RESULTS: By selecting an active phage cocktail and optimizing aerosol delivery conditions, we were able to deliver high phage concentrations in the lungs, which resulted in a rapid and marked reduction in P. aeruginosa density (1.5-log reduction, p < .001). No infective phage was detected in the sera and urines throughout the experiment. CONCLUSION AND IMPLICATIONS: Our findings demonstrated (i) the feasibility of delivering large amounts of active phages by nebulization during mechanical ventilation and (ii) rapid control of in situ infection by inhaled bacteriophage in an experimental model of P. aeruginosa pneumonia with high translational value.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Neumonía , Infecciones por Pseudomonas , Fagos Pseudomonas , Animales , Ratones , Infecciones por Pseudomonas/terapia , Pseudomonas aeruginosa , Respiración Artificial , Porcinos
13.
Biochem Cell Biol ; 88(3): 459-67, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20555388

RESUMEN

In nematodes as in other eukaryotes, there is increasing evidence that drug resistance depends on both changes in the drug cellular targets and in nonspecific mechanisms, involving cellular detoxification by efflux pumps. In vertebrates, P-glycoproteins (Pgp) are membrane efflux pumps responsible for the elimination of xenobiotic agents, especially drugs. We previously reported the presence of Pgp pumps in eggshells and cuticles of the nematode Haemonchus contortus. Eggshells and cuticles are different from cell membranes, in particular they include a chitin layer. Nevertheless these structures present some common biological features with cell membranes and play a role in xenobiotic transport. Pgp activity has been shown to depend on the lipid environment and, in particular, on the cholesterol content in both vertebrate and nematode models. In vertebrates, Pgp is in part located in membrane cholesterol-enriched microdomains, the rafts. We describe here, for the first time, lipid microdomains in eggshells that could correspond with raft-like structures (RLSs). Moreover, a large proportion of the Pgp was shown to colocalize with these RLSs. The functional consequences of the colocalization for xenobiotic transport and thus drug resistance in nematodes were analyzed and compared with results obtained in vertebrates. An understanding of such mechanisms is crucial in overcoming the failure of drug treatments due to the development of resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/análisis , Resistencia a Medicamentos , Haemonchus/química , Microdominios de Membrana/química , Animales , Transporte Biológico Activo , Citometría de Flujo , Haemonchus/citología , Haemonchus/efectos de los fármacos , Fluidez de la Membrana , Microscopía Fluorescente , Óvulo/química
14.
J Chem Ecol ; 36(4): 412-23, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20224921

RESUMEN

Mimicry is used widely by arthropods to survive in a hostile environment. Often mimicry is associated with the production of chemical compounds such as pigments. In crab spiders, the change of color is based on a complex physiological process that still is not understood. The aim of this study was to identify and quantify the ommochrome pigments and precursors responsible for the color change in the mimetic crab spider Misumena vatia (Thomisidae). A modified high performance reverse phase ion-pair chromatography technique enabled us to separate and quantify the ommochrome pigments, their precursors, and related metabolites in individual spiders. Compounds such as tryptophan, kynurenine, and kynurenic acid occurred only or mainly in white crab spiders. In contrast, compounds such as 3-hydroxy-kynurenine, xanthommatin, and ommatin D occurred only or mainly in yellow crab spiders. Factor analysis ranked the different color forms in accordance with their metabolites. The biochemical results enabled us to associate the different phases of formation of pigment granules with specific metabolites. Yellow crab spiders contain many unknown ommochrome-like compounds not present in white crab spiders. We also found large quantities of decarboxylated xanthommatin, whose role as precursor of new pathways in ommochrome synthesis needs to be assessed. The catabolism of ommochromes, a process occurring when spiders revert from yellow to white, warrants further study.


Asunto(s)
Adaptación Biológica , Fenotiazinas/metabolismo , Pigmentos Biológicos/metabolismo , Arañas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Femenino
15.
Parasite ; 27: 3, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31934848

RESUMEN

Eukaryote plasma membranes protect cells from chemical attack. Xenobiotics, taken up through passive diffusion, accumulate in the membranes, where they are captured by transporters, among which P-glycoproteins (Pgps). In nematodes such as Haemonchus contortus, eggshells and cuticles provide additional protective barriers against xenobiotics. Little is known about the role of these structures in the transport of chemical molecules. Pgps, members of the ABC transporter family, are present in eggshells and cuticles. Changes in the activity of these proteins have also been correlated with alterations in lipids, such as cholesterol content, in eggshells. However, the cellular mechanisms underlying these effects remain unclear. We show here that an experimental decrease in the cholesterol content of eggshells of Haemonchus contortus, with Methyl-beta-CycloDextrin (MßCD), results in an increase in membrane fluidity, favouring Pgp activity and leading to an increase in resistance to anthelmintics. This effect is modulated by the initial degree of anthelminthic resistance of the eggs. These results suggest that eggshell fluidity plays a major role in the modulation of Pgp activity. They confirm that Pgp activity is highly influenced by the local microenvironment, in particular sterols, as observed in some vertebrate models. Thus, eggshell barriers could play an active role in the transport of xenobiotics.


TITLE: Effets de la teneur en cholestérol sur l'activité des glycoprotéines P et sur l'état physique de la membrane, et conséquences pour la résistance aux anthelminthiques chez le nématode Haemonchus contortus. ABSTRACT: Les membranes plasmiques des eucaryotes protègent les cellules contre les attaques chimiques. Les xénobiotiques, absorbés par diffusion passive, s'accumulent dans les membranes où ils sont capturés par des transporteurs, parmi lesquels les glycoprotéines P (Pgp). Chez les nématodes, les coques des œufs et les cuticules constituent des barrières de protection supplémentaires contre les xénobiotiques. On en sait peu sur le rôle de ces structures dans le transport des molécules chimiques. Les Pgp, membres de la famille des transporteurs ABC, sont présents dans les coques et les cuticules. Des changements dans l'activité de ces protéines ont également été mis en corrélation avec des altérations des lipides, tels que la teneur en cholestérol, des coques des œufs. Cependant, les mécanismes cellulaires sous-jacents à ces effets restent flous. Nous montrons ici que la diminution expérimentale de la teneur en cholestérol des coques des œufs d'Haemonchus contortus, avec la méthyl-beta-cyclodextrine (MßCD), entraîne une augmentation de la fluidité membranaire favorisant l'activité des Pgp et une augmentation de la résistance aux anthelminthiques. Cet effet est modulé par le degré initial de résistance aux anthelminthiques des œufs. Ces résultats suggèrent que la fluidité de la coque joue un rôle majeur dans la modulation de l'activité des Pgp. Ils confirment que l'activité des Pgp est fortement influencée par le microenvironnement local, en particulier les stérols, comme observé dans certains modèles de vertébrés. Ainsi, les barrières de coques des oeufs pourraient jouer un rôle actif dans le transport des xénobiotiques.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Exoesqueleto/química , Membrana Celular/química , Colesterol/química , Resistencia a Medicamentos , Haemonchus/química , Haemonchus/efectos de los fármacos , Animales , Antihelmínticos/farmacología , Membrana Celular/efectos de los fármacos , Fluidez de la Membrana , Xenobióticos/farmacología
16.
Mol Ther Nucleic Acids ; 16: 186-193, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30897407

RESUMEN

Tetrafunctional block copolymers are molecules capable of complexing DNA. Although ineffective in vitro, studies in mice have shown that the tetrafunctional block copolymer 704 is a more efficient lung gene transfer agent than the cationic liposome GL67A, previously used in a phase II clinical trial in cystic fibrosis patients. In the present study, we compared the gene transfer capacity of the 704-DNA formulation and a cationic liposome-DNA formulation equivalent to GL67A in a larger-animal model, the newborn piglet. Our results indicate an efficacy of the 704-DNA formulation well above one order of magnitude higher than that of the cationic liposome-DNA formulation, with no elevated levels of interleukin-6 (IL-6), taken as a marker of inflammation. Transgene expression was heterogeneous within lung lobes, with expression levels that were below the detection threshold in some samples, while high in other samples. This heterogeneity is likely to be due to the bolus injection procedure as well as to the small volume of injection. The present study highlights the potential of tetrafunctional block copolymers as non-viral vectors for lung gene therapy.

17.
Viruses ; 11(6)2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242645

RESUMEN

The porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus inducing abortion in sows and respiratory disease in young pigs, is a leading infectious cause of economic losses in the swine industry. Modified live vaccines (MLVs) help in controlling the disease, but their efficacy is often compromised by the high genetic diversity of circulating viruses, leading to vaccine escape variants in the field. In this study, we hypothesized that a DNA prime with naked plasmids encoding PRRSV antigens containing conserved T-cell epitopes may improve the protection of MLV against a heterologous challenge. Plasmids were delivered with surface electroporation or needle-free jet injection and European strain-derived PRRSV antigens were targeted or not to the dendritic cell receptor XCR1. Compared to MLV-alone, the DNA-MLV prime- boost regimen slightly improved the IFNγ T-cell response, and substantially increased the antibody response against envelope motives and the nucleoprotein N. The XCR1-targeting of N significantly improved the anti-N specific antibody response. Despite this immuno-potentiation, the DNA-MLV regimen did not further decrease the serum viral load or the nasal viral shedding of the challenge strain over MLV-alone. Finally, the heterologous protection, achieved in absence of detectable effective neutralizing antibodies, was not correlated to the measured antibody or to the IFNγ T-cell response. Therefore, immune correlates of protection remain to be identified and represent an important gap of knowledge in PRRSV vaccinology. This study importantly shows that a naked DNA prime immuno-potentiates an MLV, more on the B than on the IFNγ T-cell response side, and has to be further improved to reach cross-protection.


Asunto(s)
Inmunidad Heteróloga , Esquemas de Inmunización , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Factores Inmunológicos/metabolismo , Interferón gamma/metabolismo , Mucosa Nasal/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Linfocitos T/inmunología , Resultado del Tratamiento , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas de ADN/administración & dosificación , Carga Viral , Vacunas Virales/administración & dosificación , Esparcimiento de Virus
18.
Front Physiol ; 9: 272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29618989

RESUMEN

Gastrointestinal strongyles are a major threat to horses' health and welfare. Given that strongyles inhabit the same niche as the gut microbiota, they may interact with each other. These beneficial or detrimental interactions are unknown in horses and could partly explain contrasted susceptibility to infection between individuals. To address these questions, an experimental pasture trial with 20 worm-free female Welsh ponies (10 susceptible (S) and 10 resistant (R) to parasite infection) was implemented for 5 months. Fecal egg counts (FEC), hematological and biochemical data, body weight and gut microbiological composition were studied in each individual after 0, 24, 43, 92 and 132 grazing days. R and S ponies displayed divergent immunological profiles and slight differences in microbiological composition under worm-free conditions. After exposure to natural infection, the predicted R ponies exhibited lower FEC after 92 and 132 grazing days, and maintained higher levels of circulating monocytes and eosinophils, while lymphocytosis persisted in S ponies. Although the overall gut microbiota diversity and structure remained similar during the parasite infection between the two groups, S ponies exhibited a reduction of bacteria such as Ruminococcus, Clostridium XIVa and members of the Lachnospiraceae family, which may have promoted a disruption of mucosal homeostasis at day 92. In line with this hypothesis, an increase in pathobionts such as Pseudomonas and Campylobacter together with changes in several predicted immunological pathways, including pathogen sensing, lipid metabolism, and activation of signal transduction that are critical for the regulation of immune system and energy homeostasis were observed in S relative to R ponies. Moreover, S ponies displayed an increase in protozoan concentrations at day 92, suggesting that strongyles and protozoa may contribute to each other's success in the equine intestines. It could also be that S individuals favor the increase of these carbohydrate-degrading microorganisms to enhance the supply of nutrients needed to fight strongyle infection. Overall, this study provides a foundation to better understand the mechanisms that underpin the relationship between equines and natural strongyle infection. The profiling of horse immune response and gut microbiota should contribute to the development of novel biomarkers for strongyle infection.

19.
Vet Microbiol ; 211: 141-149, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29102110

RESUMEN

Schmallenberg virus (SBV) is an emerging virus responsible for congenital malformations in the offspring of domestic ruminants. It is speculated that infection of pregnant dams may also lead to a significant number of unrecognized fetal losses during the early period of gestation. To assess the pathogenic effects of SBV infection of goats in early pregnancy, we inoculated dams at day 28 or 42 of gestation and followed the animals until day 55 of gestation. Viremia in the absence of clinical signs was detected in all virus-inoculated goats. Fetal deaths were observed in several goats infected at day 28 or 42 of gestation and were invariably associated with the presence of viral genomic RNA in the affected fetuses. Among the viable fetuses, two displayed lesions in the central nervous system (porencephaly) in the presence of viral genome and antigen. All fetuses from goats infected at day 42 and the majority of fetuses from goats infected at day 28 of gestation contained viral genomic RNA. Viral genome was widely distributed in these fetuses and their respective placentas, and infectious virus could be isolated from several organs and placentomes of the viable fetuses. Our results show that fetuses of pregnant goats are susceptible to vertical SBV infection during early pregnancy spanning at least the period between day 28 and 42 of gestation. The outcomes of experimental SBV infection assessed at day 55 of gestation include fetal mortalities, viable fetuses displaying lesions of the central nervous system, as well as viable fetuses without any detectable lesion.


Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Enfermedades de las Cabras/virología , Orthobunyavirus/aislamiento & purificación , Animales , Infecciones por Bunyaviridae/mortalidad , Infecciones por Bunyaviridae/virología , Femenino , Feto/virología , Enfermedades de las Cabras/mortalidad , Cabras , Orthobunyavirus/genética , Placenta/virología , Embarazo , Viremia/veterinaria , Viremia/virología
20.
Int J Antimicrob Agents ; 47(1): 77-83, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26691019

RESUMEN

Increases in antibiotic minimum inhibitory concentrations (MICs) for Pseudomonas aeruginosa during treatment are commonly observed but their relationship to efflux overexpression remains poorly documented. In this study, pairs of first [at time of diagnosis (D0)] and last [during treatment (DL)] P. aeruginosa isolates were obtained from patients treated for suspicion of nosocomial pneumonia. Pair clonality was determined by repetitive extragenic palindromic PCR. Overexpression of mexA and mexX was assessed by real-time PCR, and expression of mexC and mexE was assessed by PCR. Antibiotics received by patients before and during treatment were determined from clinical charts. For D0 isolates, 24% were from patients without antibiotics for 1 month and 64% were negative for mexA/mexX overexpression and mexC/mexE expression. For DL isolates, approximately one-half of the patients had received piperacillin/tazobactam, amikacin, meropenem and/or cefepime, and 17% had received ciprofloxacin (alone or in combination); 38% did not show changes in expression of the four genes, whereas 38% showed increased expression for one gene (mainly mexA or mexX), 19% for two genes (mainly mexA and mexX) and 5% for three or four genes. Isolates overexpressing mexA or mexX had median MICs above EUCAST clinical resistance breakpoints for ciprofloxacin, cefepime and meropenem, or for ciprofloxacin, amikacin, cefepime and meropenem, respectively. mexA or mexX overexpression was statistically significantly associated with patients' exposure to ciprofloxacin and meropenem or cefepime and meropenem, respectively. Overexpression of genes encoding antibiotic transporters in P. aeruginosa during treatment is frequent and is associated with increases in MICs above EUCAST clinical susceptibility breakpoints.


Asunto(s)
Antibacterianos/metabolismo , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/genética , Neumonía Bacteriana/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Transporte Biológico , Expresión Génica , Perfilación de la Expresión Génica , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA