Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Glob Chang Biol ; 29(20): 5816-5828, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37485753

RESUMEN

Climate change and climate-driven increases in infectious disease threaten wildlife populations globally. Gut microbial responses are predicted to either buffer or exacerbate the negative impacts of these twin pressures on host populations. However, examples that document how gut microbial communities respond to long-term shifts in climate and associated disease risk, and the consequences for host survival, are rare. Over the past two decades, wild meerkats inhabiting the Kalahari have experienced rapidly rising temperatures, which is linked to the spread of tuberculosis (TB). We show that over the same period, the faecal microbiota of this population has become enriched in Bacteroidia and impoverished in lactic acid bacteria (LAB), a group of bacteria including Lactococcus and Lactobacillus that are considered gut mutualists. These shifts occurred within individuals yet were compounded over generations, and were better explained by mean maximum temperatures than mean rainfall over the previous year. Enriched Bacteroidia were additionally associated with TB exposure and disease, the dry season and poorer body condition, factors that were all directly linked to reduced future survival. Lastly, abundances of LAB taxa were independently and positively linked to future survival, while enriched taxa did not predict survival. Together, these results point towards extreme temperatures driving an expansion of a disease-associated pathobiome and loss of beneficial taxa. Our study provides the first evidence from a longitudinally sampled population that climate change is restructuring wildlife gut microbiota, and that these changes may amplify the negative impacts of climate change through the loss of gut mutualists. While the plastic response of host-associated microbiotas is key for host adaptation under normal environmental fluctuations, extreme temperature increases might lead to a breakdown of coevolved host-mutualist relationships.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Cambio Climático , Animales Salvajes , Microbioma Gastrointestinal/fisiología , Bacterias
2.
J Anim Ecol ; 92(4): 790-793, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37017085

RESUMEN

Research Highlight: Brila, I., Lavirinienko, A., Tukalenko, E., Kallio, E. R., Mappes, T. & Watts, P. C. (2022). Idiosyncratic effects of coinfection on the association between systemic pathogens and the gut microbiota of a wild rodent, the bank vole (Myodes glareolus). Journal of Animal Ecology, https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13869. Interactions between pathogens and host-associated microbial communities can influence host fitness, disease progression and pathogen emergence. The vast majority of studies characterize interactions between single pathogens and bacterial commensals, yet co-infections with multiple pathogens are the norm in nature. In their paper on pathogen-microbiome interactions, Brila et al. (2022) examine how co-infections with four systemic pathogens associate with the gut microbiota in wild bank voles. Building on a series of tests, the authors show that excluding co-infection information from statistical models masks pathogen-specific patterns and confounds interpretations. This paper advances on previous studies by generating surveillance data on a phylogenetically diverse suite of vole pathogens to address the question as to whether pathogens exhibit unique or universal associations with gut commensals. They report that even bacterial pathogens with similar transmission ecology have divergent associations with gut microbes, and highlight that a mechanistic understanding of host-pathogen interactions is necessary for decoding the diverse consequences for gut microbial communities.


Asunto(s)
Coinfección , Microbioma Gastrointestinal , Microbiota , Enfermedades de los Roedores , Animales , Coinfección/veterinaria , Arvicolinae/microbiología , Bacterias
3.
Proc Biol Sci ; 289(1981): 20220609, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35975437

RESUMEN

Inter-individual differences in gut microbiota composition are hypothesized to generate variation in host fitness-a premise for the evolution of host-gut microbe symbioses. However, recent evidence suggests that gut microbial communities are highly dynamic, challenging the notion that individuals harbour unique gut microbial phenotypes. Leveraging a long-term dataset of wild meerkats, we reconcile these concepts by demonstrating that the relative importance of identity for shaping gut microbiota phenotypes depends on the temporal scale. Across meerkat lifespan, year-to-year variation overshadowed the effects of identity and social group in predicting gut microbiota composition, with identity explaining on average less than 2% of variation. However, identity was the strongest predictor of microbial phenotypes over short sampling intervals (less than two months), predicting on average 20% of variation. The effect of identity was also dependent on meerkat age, with the gut microbiota becoming more individualized and stable as meerkats aged. Nevertheless, while the predictive power of identity was negligible after two months, gut microbiota composition remained weakly individualized compared to that of other meerkats for up to 1 year. These findings illuminate the degree to which individualized gut microbial signatures can be expected, with important implications for the time frames over which gut microbial phenotypes may mediate host physiology, behaviour and fitness in natural populations.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Longevidad , ARN Ribosómico 16S , Simbiosis
4.
J Anim Ecol ; 89(7): 1549-1558, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32248522

RESUMEN

The host-associated core microbiome was originally coined to refer to common groups of microbes or genes that were likely to be particularly important for host biological function. However, the term has evolved to encompass variable definitions across studies, often identifying key microbes with respect to their spatial distribution, temporal stability or ecological influence, as well as their contribution to host function and fitness. A major barrier to reaching a consensus over how to define the core microbiome and its relevance to biological, ecological and evolutionary theory is a lack of precise terminology and associated definitions, as well the persistent association of the core microbiome with host function. Common, temporal and ecological core microbiomes can together generate insights into ecological processes that act independently of host function, while functional and host-adapted cores distinguish between facultative and near-obligate symbionts that differ in their effects on host fitness. This commentary summarizes five broad definitions of the core microbiome that have been applied across the literature, highlighting their strengths and limitations for advancing our understanding of host-microbe systems, noting where they are likely to overlap, and discussing their potential relevance to host function and fitness. No one definition of the core microbiome is likely to capture the range of key microbes across a host population. Applied together, they have the potential to reveal different layers of microbial organization from which we can begin to understand the ecological and evolutionary processes that govern host-microbe interactions.


Asunto(s)
Microbiota , Simbiosis , Animales , Evolución Biológica , Interacciones Microbiota-Huesped
5.
Emerg Infect Dis ; 25(10): 1903-1910, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31538564

RESUMEN

Highly pathogenic avian influenza (HPAI) H5Nx viruses of the goose/Guangdong/96 lineage continue to cause outbreaks in poultry and wild birds globally. Shorebirds, known reservoirs of avian influenza viruses, migrate from Siberia to Australia along the East-Asian-Australasian Flyway. We examined whether migrating shorebirds spending nonbreeding seasons in Australia were exposed to HPAI H5 viruses. We compared those findings with those for a resident duck species. We screened >1,500 blood samples for nucleoprotein antibodies and tested positive samples for specific antibodies against 7 HPAI H5 virus antigens and 2 low pathogenicity avian influenza H5 virus antigens. We demonstrated the presence of hemagglutinin inhibitory antibodies against HPAI H5 virus clade 2.3.4.4 in the red-necked stint (Calidris ruficolis). We did not find hemagglutinin inhibitory antibodies in resident Pacific black ducks (Anas superciliosa). Our study highlights the potential role of long-distance migratory shorebirds in intercontinental spread of HPAI H5 viruses.


Asunto(s)
Charadriiformes/virología , Virus de la Influenza A , Gripe Aviar/epidemiología , Migración Animal , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Australia , Patos/virología , Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Gripe Aviar/virología
6.
J Anim Ecol ; 87(1): 301-314, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28994103

RESUMEN

Migratory animals are widely assumed to play an important role in the long-distance dispersal of parasites, and are frequently implicated in the global spread of zoonotic pathogens such as avian influenzas in birds and Ebola viruses in bats. However, infection imposes physiological and behavioural constraints on hosts that may act to curtail parasite dispersal via changes to migratory timing ("migratory separation") and survival ("migratory culling"). There remains little consensus regarding the frequency and extent to which migratory separation and migratory culling may operate, despite a growing recognition of the importance of these mechanisms in regulating transmission dynamics in migratory animals. We quantitatively reviewed 85 observations extracted from 41 studies to examine how both infection status and infection intensity are related to changes in body stores, refuelling rates, movement capacity, phenology and survival in migratory hosts across taxa. Overall, host infection status was weakly associated with reduced body stores, delayed migration and lower survival, and more strongly associated with reduced movement. Infection intensity was not associated with changes to host body stores, but was associated with moderate negative effects on movement, phenology and survival. In conclusion, we found evidence for negative effects of infection on host phenology and survival, but the effects were relatively small. This may have implications for the extent to which migratory separation and migratory culling act to limit parasite dispersal in migratory systems. We propose a number of recommendations for future research that will further advance our understanding of how migratory separation and migratory culling may shape host-parasite dynamics along migratory routes globally.


Asunto(s)
Migración Animal , Aves/parasitología , Peces/parasitología , Interacciones Huésped-Parásitos , Insectos/parasitología , Longevidad , Animales , Aves/fisiología , Peces/fisiología , Insectos/fisiología
7.
J Anim Ecol ; 87(2): 428-437, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29111601

RESUMEN

Gut microbes are increasingly recognised for their role in regulating an animal's metabolism and immunity. However, identifying repeatable associations between host physiological processes and their gut microbiota has proved challenging, in part because microbial communities often respond stochastically to host physiological stress (e.g. fasting, forced exercise or infection). Migratory birds provide a valuable system in which to test host-microbe interactions under physiological extremes because these hosts are adapted to predictable metabolic and immunological challenges as they undergo seasonal migrations, including temporary gut atrophy during long-distance flights. These physiological challenges may either temporarily disrupt gut microbial ecosystems, or, alternatively, promote predictable host-microbe associations during migration. To determine the relationship between migration and gut microbiota, we compared gut microbiota composition between migrating and non-migrating ("resident") conspecific shorebirds sharing a flock. We performed this across two sandpiper species, Calidris ferruginea and Calidris ruficollis, in north-western Australia, and an additional C. ruficollis population 3,000 km away in southern Australia. We found that migrants consistently had higher abundances of the bacterial genus Corynebacterium (average 28% abundance) compared to conspecific residents (average <1% abundance), with this effect holding across both species and sites. However, other than this specific association, community structure and diversity was almost identical between migrants and residents, with migration status accounting for only 1% of gut community variation when excluding Corynebacterium. Our findings suggest a consistent relationship between Corynebacterium and Calidris shorebirds during migration, with further research required to identify causal mechanisms behind the association, and to elucidate functionality to the host. However, outside this specific association, migrating shorebirds broadly maintained gut community structure, which may allow them to quickly recover gut function after a migratory flight. This study provides a rare example of a repeatable and specific response of the gut microbiota to a major physiological challenge across two species and two distant populations.


Asunto(s)
Migración Animal , Biodiversidad , Aves/microbiología , Charadriiformes/microbiología , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/fisiología , Animales , Microbioma Gastrointestinal/genética , Especificidad del Huésped , ARN Ribosómico 16S/genética , Australia del Sur , Australia Occidental
8.
Mol Ecol ; 26(20): 5842-5854, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28815767

RESUMEN

Migratory animals encounter suites of novel microbes as they move between disparate sites during their migrations, and are frequently implicated in the global spread of pathogens. Although wild animals have been shown to source a proportion of their gut microbiota from their environment, the susceptibility of migrants to enteric infections may be dependent upon the capacity of their gut microbiota to resist incorporating encountered microbes. To evaluate migrants' susceptibility to microbial invasion, we determined the extent of microbial sourcing from the foraging environment and examined how this influenced gut microbiota dynamics over time and space in a migratory shorebird, the Red-necked stint Calidris ruficollis. Contrary to previous studies on wild, nonmigratory hosts, we found that stint on their nonbreeding grounds obtained very little of their microbiota from their environment, with most individuals sourcing only 0.1% of gut microbes from foraging sediment. This microbial resistance was reflected at the population level by only weak compositional differences between stint flocks occupying ecologically distinct sites, and by our finding that stint that had recently migrated 10,000 km did not differ in diversity or taxonomy from those that had inhabited the same site for a full year. However, recent migrants had much greater abundances of the genus Corynebacterium, suggesting a potential microbial response to either migration or exposure to a novel environment. We conclude that the gut microbiota of stint is largely resistant to invasion from ingested microbes and that this may have implications for their susceptibility to enteric infections during migration.


Asunto(s)
Migración Animal , Charadriiformes/microbiología , Ambiente , Microbioma Gastrointestinal , Sedimentos Geológicos/microbiología , Animales , Animales Salvajes/microbiología , Bacterias/clasificación , ADN Bacteriano/aislamiento & purificación , Victoria
9.
Nat Commun ; 15(1): 555, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228585

RESUMEN

As mobile genetic elements, plasmids are central for our understanding of antimicrobial resistance spread in microbial communities. Plasmids can have varying fitness effects on their host bacteria, which will markedly impact their role as antimicrobial resistance vectors. Using a plasmid population model, we first show that beneficial plasmids interact with a higher number of hosts than costly plasmids when embedded in a community with multiple hosts and plasmids. We then analyse the network of a natural host-plasmid wastewater community from a Hi-C metagenomics dataset. As predicted by the model, we find that antimicrobial resistance encoding plasmids, which are likely to have positive fitness effects on their hosts in wastewater, interact with more bacterial taxa than non-antimicrobial resistance plasmids and are disproportionally important for connecting the entire network compared to non- antimicrobial resistance plasmids. This highlights the role of antimicrobials in restructuring host-plasmid networks by increasing the benefits of antimicrobial resistance carrying plasmids, which can have consequences for the spread of antimicrobial resistance genes through microbial networks. Furthermore, that antimicrobial resistance encoding plasmids are associated with a broader range of hosts implies that they will be more robust to turnover of bacterial strains.


Asunto(s)
Antibacterianos , Aguas Residuales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Bacterias/genética
10.
Transbound Emerg Dis ; 69(6): 3274-3284, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35947092

RESUMEN

Infections with tuberculosis (TB)-causing agents of the Mycobacterium tuberculosis complex threaten human, livestock and wildlife health globally due to the high capacity to cross trans-species boundaries. Tuberculosis is a cryptic disease characterized by prolonged, sometimes lifelong subclinical infections, complicating disease monitoring. Consequently, our understanding of infection risk, disease progression, and mortality across species affected by TB remains limited. The TB agent Mycobacterium suricattae was first recorded in the late 1990s in a wild population of meerkats inhabiting the Kalahari in South Africa and has since spread considerably, becoming a common cause of meerkat mortality. This offers an opportunity to document the epidemiology of naturally spreading TB in a wild population. Here, we synthesize more than 25 years' worth of TB reporting and social interaction data across 3420 individuals to track disease spread, and quantify rates of TB social exposure, progression, and mortality. We found that most meerkats had been exposed to the pathogen within eight years of first detection in the study area, with exposure reaching up to 95% of the population. Approximately one quarter of exposed individuals progressed to clinical TB stages, followed by physical deterioration and death within a few months. Since emergence, 11.6% of deaths were attributed to TB, although the true toll of TB-related mortality is likely higher. Lastly, we observed marked variation in disease progression among individuals, suggesting inter-individual differences in both TB susceptibility and resistance. Our results highlight that TB prevalence and mortality could be higher than previously reported, particularly in species or populations with complex social group dynamics. Long-term studies, such as the present one, allow us to assess temporal variation in disease prevalence and progression and quantify exposure, which is rarely measured in wildlife. Long-term studies are highly valuable tools to explore disease emergence and ecology and study host-pathogen co-evolutionary dynamics in general, and its impact on social mammals.


Asunto(s)
Herpestidae , Tuberculosis , Animales , Humanos , Tuberculosis/epidemiología , Tuberculosis/veterinaria , Tuberculosis/microbiología , Animales Salvajes , Herpestidae/microbiología , Progresión de la Enfermedad , Sudáfrica/epidemiología
11.
J Wildl Dis ; 58(2): 309-321, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35255146

RESUMEN

Tuberculosis (TB) is an increasing threat to wildlife, yet tracking its spread is challenging because infections often appear to be asymptomatic, and diagnostic tools such as blood tests can be invasive and resource intensive. Our understanding of TB biology in wildlife is therefore limited to a small number of well-studied species. Testing of fecal samples using PCR is a noninvasive method that has been used to detect Mycobacterium bovis shedding amongst badgers, yet its utility more broadly for TB monitoring in wildlife is unclear. We combined observation data of clinical signs with PCR testing of 388 fecal samples to characterize longitudinal dynamics of TB progression in 66 wild meerkats (Suricata suricatta) socially exposed to Mycobacterium suricattae between 2000 and 2018. Our specific objectives were 1) to test whether meerkat fecal samples can be used to monitor TB; 2) to characterize TB progression between three infection states (PCR-negative exposed, PCR-positive asymptomatic, and PCR positive with clinical signs); and 3) estimate individual heterogeneity in TB susceptibility, defined here as the time between TB exposure and detection, and survival after TB detection. We found that the TB detection probability once meerkats developed clinical signs was 13% (95% confidence interval 3-46%). Nevertheless, with an adapted test protocol of 10 PCR replicates per sample we detected hidden TB infections in 59% of meerkats before the onset of clinical signs. Meerkats became PCR positive approximately 14 mo after initial exposure, developed clinical signs approximately 1 yr after becoming PCR positive, and died within 5 mo of developing clinical signs. Individual variation in disease progression was high, with meerkats developing clinical signs from immediately after exposure to 3.4 yr later. Overall, our study generates novel insights into wildlife TB progression, and may help guide adapted management strategies for TB-susceptible wildlife populations.


Asunto(s)
Herpestidae , Mycobacterium bovis , Tuberculosis , Animales , Animales Salvajes , Heces , Herpestidae/microbiología , Tuberculosis/diagnóstico , Tuberculosis/veterinaria
12.
Nat Commun ; 12(1): 6017, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650048

RESUMEN

Circadian rhythms in gut microbiota composition are crucial for metabolic function, yet the extent to which they govern microbial dynamics compared to seasonal and lifetime processes remains unknown. Here, we investigate gut bacterial dynamics in wild meerkats (Suricata suricatta) over a 20-year period to compare diurnal, seasonal, and lifetime processes in concert, applying ratios of absolute abundance. We found that diurnal oscillations in bacterial load and composition eclipsed seasonal and lifetime dynamics. Diurnal oscillations were characterised by a peak in Clostridium abundance at dawn, were associated with temperature-constrained foraging schedules, and did not decay with age. Some genera exhibited seasonal fluctuations, whilst others developed with age, although we found little support for microbial senescence in very old meerkats. Strong microbial circadian rhythms in this species may reflect the extreme daily temperature fluctuations typical of arid-zone climates. Our findings demonstrate that accounting for circadian rhythms is essential for future gut microbiome research.


Asunto(s)
Carga Bacteriana , Ritmo Circadiano , Microbioma Gastrointestinal , Estaciones del Año , Animales , Bacterias/genética , Biodiversidad , Clostridium , Biología Computacional , ADN Bacteriano , Ecología , Microbioma Gastrointestinal/genética , Humanos , Proyectos Piloto , ARN Ribosómico 16S/genética
13.
Front Microbiol ; 12: 659918, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34046023

RESUMEN

The filtering of gut microbial datasets to retain high prevalence taxa is often performed to identify a common core gut microbiome that may be important for host biological functions. However, prevalence thresholds used to identify a common core are highly variable, and it remains unclear how they affect diversity estimates and whether insights stemming from core microbiomes are comparable across studies. We hypothesized that if macroecological patterns in gut microbiome prevalence and abundance are similar across host species, then we would expect that increasing prevalence thresholds would yield similar changes to alpha diversity and beta dissimilarity scores across host species datasets. We analyzed eight gut microbiome datasets based on 16S rRNA gene amplicon sequencing and collected from different host species to (1) compare macroecological patterns across datasets, including amplicon sequence variant (ASV) detection rate with sequencing depth and sample size, occupancy-abundance curves, and rank-abundance curves; (2) test whether increasing prevalence thresholds generate universal or host-species specific effects on alpha and beta diversity scores; and (3) test whether diversity scores from prevalence-filtered core communities correlate with unfiltered data. We found that gut microbiomes collected from diverse hosts demonstrated similar ASV detection rates with sequencing depth, yet required different sample sizes to sufficiently capture rare ASVs across the host population. This suggests that sample size rather than sequencing depth tends to limit the ability of studies to detect rare ASVs across the host population. Despite differences in the distribution and detection of rare ASVs, microbiomes exhibited similar occupancy-abundance and rank-abundance curves. Consequently, increasing prevalence thresholds generated remarkably similar trends in standardized alpha diversity and beta dissimilarity across species datasets until high thresholds above 70%. At this point, diversity scores tended to become unpredictable for some diversity measures. Moreover, high prevalence thresholds tended to generate diversity scores that correlated poorly with the original unfiltered data. Overall, we recommend that high prevalence thresholds over 70% are avoided, and promote the use of diversity measures that account for phylogeny and abundance (Balance-weighted phylogenetic diversity and Weighted Unifrac for alpha and beta diversity, respectively), because we show that these measures are insensitive to prevalence filtering and therefore allow for the consistent comparison of core gut microbiomes across studies without the need for prevalence filtering.

14.
Ecol Evol ; 10(23): 13345-13354, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304542

RESUMEN

The gut microbiome of animals, which serves important functions but can also contain potential pathogens, is to varying degrees under host genetic control. This can generate signals of phylosymbiosis, whereby gut microbiome composition matches host phylogenetic structure. However, the genetic mechanisms that generate phylosymbiosis and the scale at which they act remain unclear. Two non-mutually exclusive hypotheses are that phylosymbiosis is driven by immunogenetic regions such as the major histocompatibility complex (MHC) controlling microbial composition, or by spatial structuring of neutral host genetic diversity via founder effects, genetic drift, or isolation by distance. Alternatively, associations between microbes and host phylogeny may be generated by their spatial autocorrelation across landscapes, rather than the direct effects of host genetics. In this study, we collected MHC, microsatellite, and gut microbiome data from separate individuals belonging to the Galápagos mockingbird species complex, which consists of four allopatrically distributed species. We applied multiple regression with distance matrices and Bayesian inference to test for correlations between average genetic and microbiome similarity across nine islands for which all three levels of data were available. Clustering of individuals by species was strongest when measured with microsatellite markers and weakest for gut microbiome distributions, with intermediate clustering of MHC allele frequencies. We found that while correlations between island-averaged gut microbiome composition and both microsatellite and MHC dissimilarity existed across species, these relationships were greatly weakened when accounting for geographic distance. Overall, our study finds little support for large-scale control of gut microbiome composition by neutral or adaptive genetic regions across closely related bird phylogenies, although this does not preclude the possibility that host genetics shapes gut microbiome at the individual level.

15.
Trends Ecol Evol ; 34(4): 303-314, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30704782

RESUMEN

Individual hosts differ extensively in their competence for parasites, but traditional research has discounted this variation, partly because modeling such heterogeneity is difficult. This discounting has diminished as tools have improved and recognition has grown that some hosts, the extremely competent, can have exceptional impacts on disease dynamics. Most prominent among these hosts are the superspreaders, but other forms of extreme competence (EC) exist and others await discovery; each with potentially strong but distinct implications for disease emergence and spread. Here, we propose a framework for the study and discovery of EC, suitable for different host-parasite systems, which we hope enhances our understanding of how parasites circulate and evolve in host communities.


Asunto(s)
Parásitos , Animales , Interacciones Huésped-Parásitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA