Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32888494

RESUMEN

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Femenino , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo/métodos , Hematopoyesis/genética , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética
2.
Cell ; 156(5): 1060-71, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581501

RESUMEN

Multiple sensory cues emanating from humans are thought to guide blood-feeding female mosquitoes to a host. To determine the relative contribution of carbon dioxide (CO2) detection to mosquito host-seeking behavior, we mutated the AaegGr3 gene, a subunit of the heteromeric CO2 receptor in Aedes aegypti mosquitoes. Gr3 mutants lack electrophysiological and behavioral responses to CO2. These mutants also fail to show CO2-evoked responses to heat and lactic acid, a human-derived attractant, suggesting that CO2 can gate responses to other sensory stimuli. Whereas attraction of Gr3 mutants to live humans in a large semi-field environment was only slightly impaired, responses to an animal host were greatly reduced in a spatial-scale-dependent manner. Synergistic integration of heat and odor cues likely drive host-seeking behavior in the absence of CO2 detection. We reveal a networked series of interactions by which multimodal integration of CO2, human odor, and heat orchestrates mosquito attraction to humans.


Asunto(s)
Aedes/fisiología , Dióxido de Carbono , Animales , Sangre , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos Vectores/fisiología , Ácido Láctico/metabolismo , Odorantes , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
3.
Nature ; 616(7955): 123-131, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991119

RESUMEN

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Asunto(s)
Enfermedad de la Arteria Coronaria , Multiómica , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Metabolómica/métodos , Fenotipo , Proteómica/métodos , Aprendizaje Automático , Negro o Afroamericano/genética , Asiático/genética , Pueblo Europeo/genética , Reino Unido , Conjuntos de Datos como Asunto , Internet , Reproducibilidad de los Resultados , Estudios de Cohortes , Proteoma/análisis , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Datos Factuales
4.
PLoS Genet ; 18(9): e1010294, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36048760

RESUMEN

For Alzheimer's disease-a leading cause of dementia and global morbidity-improved identification of presymptomatic high-risk individuals and identification of new circulating biomarkers are key public health needs. Here, we tested the hypothesis that a polygenic predictor of risk for Alzheimer's disease would identify a subset of the population with increased risk of clinically diagnosed dementia, subclinical neurocognitive dysfunction, and a differing circulating proteomic profile. Using summary association statistics from a recent genome-wide association study, we first developed a polygenic predictor of Alzheimer's disease comprised of 7.1 million common DNA variants. We noted a 7.3-fold (95% CI 4.8 to 11.0; p < 0.001) gradient in risk across deciles of the score among 288,289 middle-aged participants of the UK Biobank study. In cross-sectional analyses stratified by age, minimal differences in risk of Alzheimer's disease and performance on a digit recall test were present according to polygenic score decile at age 50 years, but significant gradients emerged by age 65. Similarly, among 30,541 participants of the Mass General Brigham Biobank, we again noted no significant differences in Alzheimer's disease diagnosis at younger ages across deciles of the score, but for those over 65 years we noted an odds ratio of 2.0 (95% CI 1.3 to 3.2; p = 0.002) in the top versus bottom decile of the polygenic score. To understand the proteomic signature of inherited risk, we performed aptamer-based profiling in 636 blood donors (mean age 43 years) with very high or low polygenic scores. In addition to the well-known apolipoprotein E biomarker, this analysis identified 27 additional proteins, several of which have known roles related to disease pathogenesis. Differences in protein concentrations were consistent even among the youngest subset of blood donors (mean age 33 years). Of these 28 proteins, 7 of the 8 proteins with concentrations available were similarly associated with the polygenic score in participants of the Multi-Ethnic Study of Atherosclerosis. These data highlight the potential for a DNA-based score to identify high-risk individuals during the prolonged presymptomatic phase of Alzheimer's disease and to enable biomarker discovery based on profiling of young individuals in the extremes of the score distribution.


Asunto(s)
Enfermedad de Alzheimer , Adulto , Anciano , Enfermedad de Alzheimer/patología , Biomarcadores , Estudios Transversales , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Proteómica
5.
PLoS Pathog ; 18(2): e1010256, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35196357

RESUMEN

Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission. The long-term stability of Wolbachia effects is critical for ongoing disease suppression, requiring tracking of phenotypic and genomic changes in Wolbachia infections following releases. We used a combination of field surveys, phenotypic assessments, and Wolbachia genome sequencing to show that wMel has remained stable in its effects for up to a decade in Australian Ae. aegypti populations. Phenotypic comparisons of wMel-infected and uninfected mosquitoes from near-field and long-term laboratory populations suggest limited changes in the effects of wMel on mosquito fitness. Treating mosquitoes with antibiotics used to cure the wMel infection had limited effects on fitness in the next generation, supporting the use of tetracycline for generating uninfected mosquitoes without off-target effects. wMel has a temporally stable within-host density and continues to induce complete cytoplasmic incompatibility. A comparison of wMel genomes from pre-release (2010) and nine years post-release (2020) populations show few genomic differences and little divergence between release locations, consistent with the lack of phenotypic changes. These results indicate that releases of Wolbachia-infected mosquitoes for population replacement are likely to be effective for many years, but ongoing monitoring remains important to track potential evolutionary changes.


Asunto(s)
Aedes , Arbovirus , Wolbachia , Animales , Australia , Wolbachia/genética
6.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607949

RESUMEN

Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the "Debug" Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.


Asunto(s)
Aedes/microbiología , Infecciones por Arbovirus/prevención & control , Infertilidad Masculina , Control de Mosquitos/métodos , Wolbachia/metabolismo , Aedes/fisiología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus , Australia , Agentes de Control Biológico , Femenino , Humanos , Masculino , Mosquitos Vectores/microbiología , Queensland
7.
Am J Hum Genet ; 105(6): 1076-1090, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31679650

RESUMEN

Cytokines are essential regulatory components of the immune system, and their aberrant levels have been linked to many disease states. Despite increasing evidence that cytokines operate in concert, many of the physiological interactions between cytokines, and the shared genetic architecture that underlies them, remain unknown. Here, we aimed to identify and characterize genetic variants with pleiotropic effects on cytokines. Using three population-based cohorts (n = 9,263), we performed multivariate genome-wide association studies (GWAS) for a correlation network of 11 circulating cytokines, then combined our results in meta-analysis. We identified a total of eight loci significantly associated with the cytokine network, of which two (PDGFRB and ABO) had not been detected previously. In addition, conditional analyses revealed a further four secondary signals at three known cytokine loci. Integration, through the use of Bayesian colocalization analysis, of publicly available GWAS summary statistics with the cytokine network associations revealed shared causal variants between the eight cytokine loci and other traits; in particular, cytokine network variants at the ABO, SERPINE2, and ZFPM2 loci showed pleiotropic effects on the production of immune-related proteins, on metabolic traits such as lipoprotein and lipid levels, on blood-cell-related traits such as platelet count, and on disease traits such as coronary artery disease and type 2 diabetes.


Asunto(s)
Biomarcadores/análisis , Enfermedades Cardiovasculares/genética , Citocinas/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/inmunología , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/patología , Niño , Citocinas/inmunología , Femenino , Estudios de Seguimiento , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Adulto Joven
8.
PLoS Med ; 18(1): e1003498, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33444330

RESUMEN

BACKGROUND: Polygenic risk scores (PRSs) can stratify populations into cardiovascular disease (CVD) risk groups. We aimed to quantify the potential advantage of adding information on PRSs to conventional risk factors in the primary prevention of CVD. METHODS AND FINDINGS: Using data from UK Biobank on 306,654 individuals without a history of CVD and not on lipid-lowering treatments (mean age [SD]: 56.0 [8.0] years; females: 57%; median follow-up: 8.1 years), we calculated measures of risk discrimination and reclassification upon addition of PRSs to risk factors in a conventional risk prediction model (i.e., age, sex, systolic blood pressure, smoking status, history of diabetes, and total and high-density lipoprotein cholesterol). We then modelled the implications of initiating guideline-recommended statin therapy in a primary care setting using incidence rates from 2.1 million individuals from the Clinical Practice Research Datalink. The C-index, a measure of risk discrimination, was 0.710 (95% CI 0.703-0.717) for a CVD prediction model containing conventional risk predictors alone. Addition of information on PRSs increased the C-index by 0.012 (95% CI 0.009-0.015), and resulted in continuous net reclassification improvements of about 10% and 12% in cases and non-cases, respectively. If a PRS were assessed in the entire UK primary care population aged 40-75 years, assuming that statin therapy would be initiated in accordance with the UK National Institute for Health and Care Excellence guidelines (i.e., for persons with a predicted risk of ≥10% and for those with certain other risk factors, such as diabetes, irrespective of their 10-year predicted risk), then it could help prevent 1 additional CVD event for approximately every 5,750 individuals screened. By contrast, targeted assessment only among people at intermediate (i.e., 5% to <10%) 10-year CVD risk could help prevent 1 additional CVD event for approximately every 340 individuals screened. Such a targeted strategy could help prevent 7% more CVD events than conventional risk prediction alone. Potential gains afforded by assessment of PRSs on top of conventional risk factors would be about 1.5-fold greater than those provided by assessment of C-reactive protein, a plasma biomarker included in some risk prediction guidelines. Potential limitations of this study include its restriction to European ancestry participants and a lack of health economic evaluation. CONCLUSIONS: Our results suggest that addition of PRSs to conventional risk factors can modestly enhance prediction of first-onset CVD and could translate into population health benefits if used at scale.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Factores de Riesgo de Enfermedad Cardiaca , Adulto , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Medición de Riesgo , Reino Unido/epidemiología
9.
Mol Ecol ; 30(5): 1174-1189, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33421231

RESUMEN

Population genomic approaches can characterize dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG) and four incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232-577. Close kin dyads revealed recent movement between islands 31-203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and nonadjacent islands. Private alleles and a co-ancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.


Asunto(s)
Aedes , Mosquitos Vectores , Animales , Australia , Humanos , Islas , Metagenómica , Papúa Nueva Guinea
10.
Bioinformatics ; 35(6): 1064-1066, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30169561

RESUMEN

SUMMARY: A common goal of microbiome studies is the elucidation of community composition and member interactions using counts of taxonomic units extracted from sequence data. Inference of interaction networks from sparse and compositional data requires specialized statistical approaches. A popular solution is SparCC, however its performance limits the calculation of interaction networks for very high-dimensional datasets. Here we introduce FastSpar, an efficient and parallelizable implementation of the SparCC algorithm which rapidly infers correlation networks and calculates P-values using an unbiased estimator. We further demonstrate that FastSpar reduces network inference wall time by 2-3 orders of magnitude compared to SparCC. AVAILABILITY AND IMPLEMENTATION: FastSpar source code, precompiled binaries and platform packages are freely available on GitHub: github.com/scwatts/FastSpar. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microbiota , Programas Informáticos , Algoritmos
11.
PLoS Biol ; 15(5): e2001894, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28557993

RESUMEN

Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100-200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.


Asunto(s)
Aedes/microbiología , Agentes de Control Biológico , Virus del Dengue/fisiología , Dengue/prevención & control , Modelos Biológicos , Urbanización , Wolbachia/fisiología , Aedes/crecimiento & desarrollo , Aedes/fisiología , Aedes/virología , Animales , Agentes de Control Biológico/aislamiento & purificación , Colapso de Colonias/microbiología , Colapso de Colonias/virología , Heurística Computacional , Dengue/transmisión , Dengue/virología , Virus del Dengue/crecimiento & desarrollo , Virus del Dengue/aislamiento & purificación , Vectores de Enfermedades , Femenino , Salud Global , Transición de la Salud , Humanos , Control de Infecciones , Masculino , Parques Recreativos , Queensland , Análisis Espacio-Temporal , Wolbachia/crecimiento & desarrollo , Wolbachia/aislamiento & purificación
12.
Nucleic Acids Res ; 46(22): e133, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30189032

RESUMEN

Investigation of the genetic architecture of gene expression traits has aided interpretation of disease and trait-associated genetic variants; however, key aspects of expression quantitative trait loci (eQTL) study design and analysis remain understudied. We used extensive, empirically driven simulations to explore eQTL study design and the performance of various analysis strategies. Across multiple testing correction methods, false discoveries of genes with eQTLs (eGenes) were substantially inflated when false discovery rate (FDR) control was applied to all tests and only appropriately controlled using hierarchical procedures. All multiple testing correction procedures had low power and inflated FDR for eGenes whose causal SNPs had small allele frequencies using small sample sizes (e.g. frequency <10% in 100 samples), indicating that even moderately low frequency eQTL SNPs (eSNPs) in these studies are enriched for false discoveries. In scenarios with ≥80% power, the top eSNP was the true simulated eSNP 90% of the time, but substantially less frequently for very common eSNPs (minor allele frequencies >25%). Overestimation of eQTL effect sizes, so-called 'Winner's Curse', was common in low and moderate power settings. To address this, we developed a bootstrap method (BootstrapQTL) that led to more accurate effect size estimation. These insights provide a foundation for future eQTL studies, especially those with sampling constraints and subtly different conditions.


Asunto(s)
Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Algoritmos , Simulación por Computador , Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Humanos , Modelos Genéticos , Tamaño de la Muestra
13.
Proc Biol Sci ; 286(1905): 20190973, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31238839

RESUMEN

In this perspective, I discuss the great eras of vector control, centring on Aedes aegypti, the primary vector of dengue, Zika and several other viruses. Since the discovery and acceptance of the role of mosquitoes as vectors of disease agents, several significant strategies have been developed and deployed to control them and the diseases they transmit. Environmental management, insecticides and, to a lesser extent, biological control have emerged as great eras of vector control. In the past decade, the release of massive numbers of specifically modified mosquitoes that mate with wild populations has emerged as a significant new strategy to fight vector-borne diseases. These reared and released mosquitoes have been modified by the addition of a symbiont (e.g. Wolbachia bacteria), radiation or introduction of a genetic construct to either sterilize the wild mosquitoes they mate with, crashing the population, or to reduce the wild population's capacity to vector pathogens. Will these new rear and release strategies become the next great era of vector control? From my vantage point as a dengue control manager and researcher involved in two Wolbachia programmes, I will discuss the hurdles that rear and release programmes face to gain widespread acceptance and success.


Asunto(s)
Control de Mosquitos , Mosquitos Vectores , Control Biológico de Vectores , Aedes , Animales , Dengue , Queensland , Wolbachia , Infección por el Virus Zika
14.
Malar J ; 18(1): 208, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234876

RESUMEN

BACKGROUND: Malaria transmission varies in intensity amongst Solomon Island villages where Anopheles farauti is the only vector. This variation in transmission intensity might be explained by density-dependent processes during An. farauti larval development, as density dependence can impact adult size with associated fitness costs and daily survivorship. METHODS: Adult anophelines were sampled from six villages in Western and Central Provinces, Solomon Islands between March 2014 and February 2017. The size of females was estimated by measuring wing lengths, and then analysed for associations with biting densities and rainfall. RESULTS: In the Solomon Islands, three anopheline species, An. farauti, Anopheles hinesorum and Anopheles lungae, differed in size. The primary malaria vector, An. farauti, varied significantly in size among villages. Greater rainfall was directly associated with higher densities of An. farauti biting rates, but inversely associated with body size with the smallest mean sized mosquitoes present during the peak transmission period. A measurable association between body size and survivorship was not found. CONCLUSIONS: Density dependent effects are likely impacting the size of adult An. farauti emerging from a range of larval habitats. The data suggest that rainfall increases An. farauti numbers and that these more abundant mosquitoes are significantly smaller in size, but without any reduced survivorship being associated with smaller size. The higher malaria transmission rate in a high malaria focus village appears to be determined more by vector numbers than size or survivorship of the vectors.


Asunto(s)
Anopheles/anatomía & histología , Anopheles/fisiología , Tamaño Corporal , Malaria/transmisión , Mosquitos Vectores/anatomía & histología , Mosquitos Vectores/fisiología , Estaciones del Año , Animales , Mordeduras y Picaduras , Femenino , Humanos , Melanesia , Lluvia
15.
J Infect Dis ; 215(suppl_2): S103-S108, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28403439

RESUMEN

Both chikungunya and Zika viruses have recently swept from Africa across the Pacific to the Americas, causing major outbreaks of disease in humans. In the meantime, dengue epidemics continue throughout the tropics. Traditional vector control programs based on strategies from 1950s and 1960s have been relatively ineffective in combating recent epidemics. In response, new methods involving the rearing and releasing of large numbers of mosquitoes to eliminate or modify local Aedes populations are being developed, with several currently conducting field releases in high-risk countries. These advances, include the release of Wolbachia-infected Aedes aegypti and Aedes albopictus, for either its virus-blocking capabilities, sterilization by cytoplasmic incompatibility, or both; the release of Aedes carrying dominant lethal genes, such as the OX513A strain of A. aegypti; and other emerging techniques, such as advancing gene-drive technologies, are summarized, as well as current stages of development and primary operational and regulatory hurdles. Although these technologies show great promise, none are ready for widespread rollout for cities of millions of people. Thus, efforts should be made to avoid methods such as space sprays that have failed and improve existing technologies to increase their efficacy.


Asunto(s)
Aedes/fisiología , Fiebre Chikungunya/prevención & control , Dengue/prevención & control , Insectos Vectores/fisiología , Control de Mosquitos , Aedes/virología , Animales , Fiebre Chikungunya/transmisión , Dengue/transmisión , Humanos , Insectos Vectores/virología , Reproducción
16.
Arch Virol ; 162(11): 3529-3534, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28785815

RESUMEN

Three new viruses classifiable within the Totivirus and Orbivirus genera were detected from Anopheles mosquito species collected in Eastern Australia. The viruses could not be isolated in C6/36 mosquito cell cultures but were shown to replicate in their mosquito hosts by small RNA analysis. The viruses grouped phylogenetically with other viruses recently detected in insects. These discoveries contribute to a better understanding of commensal viruses in Australian mosquitoes and the evolution of these viruses.


Asunto(s)
Anopheles/virología , Orbivirus/aislamiento & purificación , Totivirus/aislamiento & purificación , Distribución Animal , Animales , Australia , Línea Celular , Orbivirus/genética , Filogenia , Totivirus/genética
17.
BMC Biol ; 14(1): 96, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27825343

RESUMEN

BACKGROUND: Arbovirus transmission by the mosquito Aedes aegypti can be reduced by the introduction and establishment of the endosymbiotic bacteria Wolbachia in wild populations of the vector. Wolbachia spreads by increasing the fitness of its hosts relative to uninfected mosquitoes. However, mosquito fitness is also strongly affected by population size through density-dependent competition for limited food resources. We do not understand how this natural variation in fitness affects symbiont spread, which limits our ability to design successful control strategies. RESULTS: We develop a mathematical model to predict A. aegypti-Wolbachia dynamics that incorporates larval density-dependent variation in important fitness components of infected and uninfected mosquitoes. Our model explains detailed features of the mosquito-Wolbachia dynamics observed in two independent experimental A. aegypti populations, allowing the combined effects on dynamics of multiple density-dependent fitness components to be characterized. We apply our model to investigate Wolbachia field release dynamics, and show how invasion outcomes can depend strongly on the severity of density-dependent competition at the release site. Specifically, the ratio of released relative to wild mosquitoes required to attain a target infection frequency (at the end of a release program) can vary by nearly an order of magnitude. The time taken for Wolbachia to become established following releases can differ by over 2 years. These effects depend on the relative fitness of field and insectary-reared mosquitoes. CONCLUSIONS: Models of Wolbachia invasion incorporating density-dependent demographic variation in the host population explain observed dynamics in experimental A. aegypti populations. These models predict strong effects of density-dependence on Wolbachia dynamics in field populations, and can assist in the effective use of Wolbachia to control the transmission of arboviruses such as dengue, chikungunya and zika.


Asunto(s)
Aedes/microbiología , Modelos Teóricos , Wolbachia/patogenicidad , Animales , Teorema de Bayes , Virus Zika/patogenicidad
18.
J Med Entomol ; 53(1): 245-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26502754

RESUMEN

The need to capture male mosquitoes has intensified recently as a result of a number of male-based sterile insect technique (SIT) and population-modification programs focused on Aedes aegypti (L.) having initiated field releases. Here, we report the results of the successful exploitation of the attraction of male Ae. aegypti to female flight tones to enhance male collections in nonmechanical passive (nonbattery powered) Gravid Aedes Traps (GAT). Prior to field studies, male attraction to female flight tones of 484 and 560 Hz, as well as to a male flight tone of 715 Hz, were assessed in a series of controlled release-recapture and semifield trials. These trials determined that a pure tone of 484 Hz was significantly more attractive to free-flying males than the other flight tones and enabled their collection in sound-baited GATs (ca. 95% capture rate after 2 h; 484 Hz at 65 dB). In contrast, gravid females were unresponsive to male or female flight tones and were evenly distributed among sound-baited and control GATs. Importantly, under normal field conditions sound-baited GATs (484 Hz at 70 dB) captured significantly more male Ae. aegypti per 24-h trap interval (1.3 ± 0.37) than controls (0.2 ± 0.13). Overall, sound-bated GATs captured approximately twice as many Ae. aegypti (male and female; 3.0 ± 0.68 per interval, 30 total) than controls (1.5 ± 0.56 per interval, 15 total). These results reveal that sound-baited GATs are a simple and effective surveillance tool for Ae. aegypti that would allow current male-based SIT and population-modification programs to effectively monitor males in their target populations.


Asunto(s)
Aedes , Vuelo Animal , Control de Mosquitos/instrumentación , Sonido , Animales , Femenino , Masculino
19.
BMC Infect Dis ; 14: 447, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25139524

RESUMEN

BACKGROUND: The World Health Organization estimates that the global number of dengue infections range between 80-100 million per year, with some studies estimating approximately three times higher numbers. Furthermore, the geographic range of dengue virus transmission is extending with the disease now occurring more frequently in areas such as southern Europe. Ae. aegypti, one of the most prominent dengue vectors, is endemic to the far north-east of Australia and the city of Cairns frequently experiences dengue outbreaks which sometimes lead to large epidemics. METHOD: A spatially-explicit, individual-based mathematical model that accounts for the spread of dengue infection as a result of human movement and mosquito dispersion is presented. The model closely couples the four key sub-models necessary for representing the overall dynamics of the physical system, namely those describing mosquito population dynamics, human movement, virus transmission and vector control. Important features are the use of high quality outbreak data and mosquito trapping data for calibration and validation and a strategy to derive local mosquito abundance based on vegetation coverage and census data. RESULTS: The model has been calibrated using detailed 2003 dengue outbreak data from Cairns, together with census and mosquito trapping data, and is shown to realistically reproduce a further dengue outbreak. The simulation results replicating the 2008/2009 Cairns epidemic support several hypotheses (formulated previously) aimed at explaining the large-scale epidemic which occurred in 2008/2009; specifically, while warmer weather and increased human movement had only a small effect on the spread of the virus, a shorter virus strain-specific extrinsic incubation time can explain the observed explosive outbreak of 2008/2009. CONCLUSION: The proof-of-concept simulation model described in this study has potential as a tool for understanding factors contributing to dengue spread as well as planning and optimizing dengue control, including reducing the Ae. aegypti vector population and for estimating the effectiveness and cost-effectiveness of future vaccination programmes. This model could also be applied to other vector borne viral diseases such as chikungunya, also spread by Ae. aegypti and, by re-parameterisation of the vector sub-model, to dengue and chikungunya viruses spread by Aedes albopictus.


Asunto(s)
Virus del Dengue/fisiología , Dengue/transmisión , Aedes/crecimiento & desarrollo , Aedes/virología , Animales , Australia/epidemiología , Dengue/epidemiología , Dengue/virología , Virus del Dengue/aislamiento & purificación , Brotes de Enfermedades , Europa (Continente)/epidemiología , Humanos , Insectos Vectores/virología , Modelos Teóricos , Salud Urbana , Tiempo (Meteorología)
20.
J Med Entomol ; 51(1): 200-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24605470

RESUMEN

Monitoring dengue vector control by sampling adult Aedes aegypti (L.) recently has been used to replace both larval and pupal surveys. We have developed and evaluated the Gravid Aedes Trap (GAT) through a sequential behavioral study. The GAT does not require electricity to function, and trapped mosquitoes are identified easily during trap inspections. The GAT concept relies on visual and olfactory cues to lure gravid Ae. aegypti and an insecticide to kill trapped mosquitoes. Gravid mosquitoes are lured to a black bucket base containing oviposition attractant (infusion) and are trapped in a translucent chamber impregnated with a pyrethroid insecticide where they are killed within 3-15 min. In semifield observations, the GAT captured a significantly higher proportion of gravid mosquitoes than the double sticky ovitrap. We also demonstrated that the visual cues of the prototype GAT-LgBF (large black base bucket with a black funnel at the top of the translucent chamber) captured a significantly higher proportion of gravid mosquitoes than the other prototypes. The visual contrast created by the addition of a white lid to the top of the black funnel significantly increased the number of captured gravid mosquitoes when compared with the GAT-LgBF in semifield trials. We conclude that the GAT is more efficient in recapturing gravid Ae. aegypti when compared with sticky ovitraps. The GAT is an effective, practical, low cost, and easily transportable trap, features that are essential in large-scale monitoring programs, particularly in areas where funding is limited.


Asunto(s)
Aedes , Control de Mosquitos/instrumentación , Animales , Femenino , Insecticidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA