Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 29(4): 426-39, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25691469

RESUMEN

The initiation of chromosome morphogenesis marks the beginning of mitosis in all eukaryotic cells. Although many effectors of chromatin compaction have been reported, the nature and design of the essential trigger for global chromosome assembly remain unknown. Here we reveal the identity of the core mechanism responsible for chromosome morphogenesis in early mitosis. We show that the unique sensitivity of the chromosome condensation machinery for the kinase activity of Cdk1 acts as a major driving force for the compaction of chromatin at mitotic entry. This sensitivity is imparted by multisite phosphorylation of a conserved chromatin-binding sensor, the Smc4 protein. The multisite phosphorylation of this sensor integrates the activation state of Cdk1 with the dynamic binding of the condensation machinery to chromatin. Abrogation of this event leads to chromosome segregation defects and lethality, while moderate reduction reveals the existence of a novel chromatin transition state specific to mitosis, the intertwist configuration. Collectively, our results identify the mechanistic basis governing chromosome morphogenesis in early mitosis and how distinct chromatin compaction states can be established via specific thresholds of Cdk1 kinase activity.


Asunto(s)
División Celular/genética , Cromosomas Fúngicos/genética , Quinasas Ciclina-Dependientes/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Genes de Cambio/fisiología , Mitosis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO J ; 35(14): 1565-81, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27266525

RESUMEN

Condensins associate with DNA and shape mitotic chromosomes. Condensins are enriched nearby highly expressed genes during mitosis, but how this binding is achieved and what features associated with transcription attract condensins remain unclear. Here, we report that condensin accumulates at or in the immediate vicinity of nucleosome-depleted regions during fission yeast mitosis. Two transcriptional coactivators, the Gcn5 histone acetyltransferase and the RSC chromatin-remodelling complex, bind to promoters adjoining condensin-binding sites and locally evict nucleosomes to facilitate condensin binding and allow efficient mitotic chromosome condensation. The function of Gcn5 is closely linked to condensin positioning, since neither the localization of topoisomerase II nor that of the cohesin loader Mis4 is altered in gcn5 mutant cells. We propose that nucleosomes act as a barrier for the initial binding of condensin and that nucleosome-depleted regions formed at highly expressed genes by transcriptional coactivators constitute access points into chromosomes where condensin binds free genomic DNA.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Nucleosomas/metabolismo , Schizosaccharomyces/fisiología , Acetiltransferasas/metabolismo , Composición de Base , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/metabolismo
3.
Curr Genet ; 63(4): 577-589, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27909798

RESUMEN

The packaging of DNA into chromosomes is a ubiquitous process that enables living organisms to structure and transmit their genome accurately through cell divisions. In the three kingdoms of life, the architecture and dynamics of chromosomes rely upon ring-shaped SMC (Structural Maintenance of Chromosomes) condensin complexes. To understand how condensin rings organize chromosomes, it is essential to decipher how they associate with chromatin filaments. Here, we use recent evidence to discuss the role played by nucleosomes and transcription factors in the loading of condensin at transcribed genes. We propose a model whereby cis-acting features nestled in the promoters of active genes synergistically attract condensin rings and promote their association with DNA.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromatina/genética , Cromosomas/genética , Proteínas de Unión al ADN/genética , ADN/genética , Complejos Multiproteicos/genética , Adenosina Trifosfatasas/química , Proteínas de Ciclo Celular/genética , División Celular/genética , Cromatina/química , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/genética , Cromosomas/química , Cromosomas/ultraestructura , ADN/ultraestructura , Proteínas de Unión al ADN/química , Genoma/genética , Mitosis/genética , Complejos Multiproteicos/química , Nucleosomas/genética , Regiones Promotoras Genéticas
4.
Curr Genet ; 56(4): 341-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20495807

RESUMEN

While carrying out a systematic disruption of the genes of unknown function in the alc gene cluster from the filamentous fungus Aspergillus nidulans, we observed a strong diminution of the transcription of markers inserted in the alcS gene. This was found to be the case for the two markers tested, nadA (from A. nidulans) and pyrG (from A. fumigatus) involved in purine utilization and uracil/uridine biosynthetic pathway, respectively. The same phenomenon was also observed with insertion of the nadA gene in the alcM locus, another gene of the alc cluster. In the case of nadA, the level of expression was directly correlated to the ability of the corresponding strains to grow on adenine as a sole nitrogen source. The insertion of the pyrG marker into alcS complemented perfectly vegetative growth, but did not allow a proper sexual cycle. This suggests that the lowered pyrG expression is not sufficient to provide the intracellular concentration of pyrimidines required for the sexual cycle. Thus, due caution must be exercised when disrupting genes with pyrG, one of the most commonly employed markers, especially if the gene to be disrupted is involved or suspected to be involved in the sexual cycle.


Asunto(s)
Aspergillus nidulans/genética , Silenciador del Gen , Factores de Transcripción , Transgenes , Genes Fúngicos , Sitios Genéticos , Marcadores Genéticos , Métodos
5.
Fungal Genet Biol ; 46 Suppl 1: S19-S44, 2009 03.
Artículo en Inglés | MEDLINE | ID: mdl-19610199

RESUMEN

Some of the Aspergilli are reputed for their versatile and efficient catabolism of soluble carbon sources and related metabolites as well as raw polymeric materials. Here, we present a detailed investigation of the genomic and evolutionary basis for this versatility, using seven Aspergillus and one Neosartorya genome sequences. We manually annotated about 155 genes per genome covering glycolysis, the pentose phosphate cycle, alternative routes of D-glucose metabolism, catabolism of D-galactose and pentoses, and the TCA cycle, as well as the utilization of acetate and ethanol, propionate metabolism, and gluconeogenesis.The annotation reveals that the Aspergilli have re-enforced several areas of their primary metabolism(notably glycolysis, TCA cycle, ethanol utilization, and pentose and polyol metabolism) by gene duplications,horizontal gene transfer or gene clustering. Results from the phylogenetic analysis of several enzymes encoded by duplicated genes also suggests that some gene products may have acquired new(physiological) functions, that render primary carbon metabolism of the Aspergilli more complex than previously thought.


Asunto(s)
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Biodiversidad , Carbono/metabolismo , Evolución Molecular , Genes Fúngicos , Secuencia de Aminoácidos , Aspergillus nidulans/enzimología , Secuencia de Bases , Metabolismo de los Hidratos de Carbono , Enzimas/genética , Enzimas/metabolismo , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
6.
Biochem J ; 412(3): 485-93, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18302536

RESUMEN

In a previous study, alcS, a gene of the Aspergillus nidulans alc cluster, was shown to encode a protein that belongs to the GPR1/FUN34/YaaH membrane protein family. BLAST screening of the A. nidulans genome data identified additional genes encoding hypothetical proteins that could belong to this family. In this study we report the functional characterization of one of them, AN5226. Its expression is induced by ethanol and ethyl acetate (two inducers of the alc genes) and is mediated by the specific transcriptional activator of genes of the acetate-utilization pathway FacB. Growth of a null mutant (DeltaAN5226) is notably affected when acetate is used as sole carbon source at low concentration and in a high pH medium, i.e. when protonated acetate, the form that can enter the cell by passive diffusion, is present in low amounts. Consistently, expression of AN5226 is also induced by acetate, but only when the latter is present at low concentrations. (14)C-labelled acetate uptake experiments using germinating conidia demonstrate an essential role for AN5226 in mediated acetate transport. To our knowledge this report is the first to provide evidence for the identification of an acetate transporter in filamentous fungi. We have designated AN5226 as acpA (for acetate permease A).


Asunto(s)
Acetatos/metabolismo , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Fúngicas/genética , Genes Fúngicos , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Acetato de Sodio/metabolismo , Transcripción Genética
7.
Elife ; 72018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30230473

RESUMEN

Condensins are genome organisers that shape chromosomes and promote their accurate transmission. Several studies have also implicated condensins in gene expression, although any mechanisms have remained enigmatic. Here, we report on the role of condensin in gene expression in fission and budding yeasts. In contrast to previous studies, we provide compelling evidence that condensin plays no direct role in the maintenance of the transcriptome, neither during interphase nor during mitosis. We further show that the changes in gene expression in post-mitotic fission yeast cells that result from condensin inactivation are largely a consequence of chromosome missegregation during anaphase, which notably depletes the RNA-exosome from daughter cells. Crucially, preventing karyotype abnormalities in daughter cells restores a normal transcriptome despite condensin inactivation. Thus, chromosome instability, rather than a direct role of condensin in the transcription process, changes gene expression. This knowledge challenges the concept of gene regulation by canonical condensin complexes.


Asunto(s)
Adenosina Trifosfatasas/genética , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/genética , ARN de Hongos/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fase G2/genética , Perfilación de la Expresión Génica , Inestabilidad Genómica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Complejos Multiproteicos/metabolismo , Mutación , ARN de Hongos/metabolismo , Fase S/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
8.
Cell Cycle ; 13(7): 1078-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24553123

RESUMEN

Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways ensuring the repair of DNA double-stranded breaks (DSBs) in eukaryotes. It has long been known that cell cycle stage is a major determinant of the type of pathway used to repair DSBs in vivo. However, the mechanistic basis for the cell cycle regulation of the DNA damage response is still unclear. Here we show that a major DSB sensor, the Mre11-Rad50-Xrs2 (MRX) complex, is regulated by cell cycle-dependent phosphorylation specifically in mitosis. This modification depends on the cyclin-dependent kinase Cdc28/Cdk1, and abrogation of Xrs2 and Mre11 phosphorylation results in a marked preference for DSB repair through NHEJ. Importantly, we show that phosphorylation of the MRX complex after DNA damage and during mitosis are regulated independently of each other by Tel1/ATM and Cdc28/Cdk1 kinases. Collectively, our results unravel an intricate network of phosphoregulatory mechanisms that act through the MRX complex to modulate DSB repair efficiency during mitosis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN de Hongos/metabolismo , Mitosis , Fosforilación , Saccharomyces cerevisiae/citología , Transducción de Señal
9.
G3 (Bethesda) ; 4(2): 373-81, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24362309

RESUMEN

Mitotic chromosome condensation is a prerequisite for the accurate segregation of chromosomes during cell division, and the conserved condensin complex a central player of this process. However, how condensin binds chromatin and shapes mitotic chromosomes remain poorly understood. Recent genome-wide binding studies showing that in most species condensin is enriched near highly expressed genes suggest a conserved link between condensin occupancy and high transcription rates. To gain insight into the mechanisms of condensin binding and mitotic chromosome condensation, we searched for factors that collaborate with condensin through a synthetic lethal genetic screen in the fission yeast Schizosaccharomyces pombe. We isolated novel mutations affecting condensin, as well as mutations in four genes not previously implicated in mitotic chromosome condensation in fission yeast. These mutations cause chromosome segregation defects similar to those provoked by defects in condensation. We also identified a suppressor of the cut3-477 condensin mutation, which largely rescued chromosome segregation during anaphase. Remarkably, of the five genes identified in this study, four encode transcription co-factors. Our results therefore provide strong additional evidence for a functional connection between chromosome condensation and transcription.


Asunto(s)
Epistasis Genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Mutación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Curr Biol ; 24(23): 2861-7, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25454593

RESUMEN

Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompasses the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Segregación Cromosómica , ADN Ribosómico/metabolismo , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo
11.
Fungal Genet Biol ; 43(4): 247-60, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16531087

RESUMEN

The ethanol utilization pathway (alc system) of Aspergillus nidulans requires two structural genes, alcA and aldA, which encode the two enzymes (alcohol dehydrogenase and aldehyde dehydrogenase, respectively) allowing conversion of ethanol into acetate via acetyldehyde, and a regulatory gene, alcR, encoding the pathway-specific autoregulated transcriptional activator. The alcR and alcA genes are clustered with three other genes that are also positively regulated by alcR, although they are dispensable for growth on ethanol. In this study, we characterized alcS, the most abundantly transcribed of these three genes. alcS is strictly co-regulated with alcA, and encodes a 262-amino acid protein. Sequence comparison with protein databases detected a putative conserved domain that is characteristic of the novel GPR1/FUN34/YaaH membrane protein family. It was shown that the AlcS protein is located in the plasma membrane. Deletion or overexpression of alcS did not result in any obvious phenotype. In particular, AlcS does not appear to be essential for the transport of ethanol, acetaldehyde or acetate. Basic Local Alignment Search Tool analysis against the A. nidulans genome led to the identification of two novel ethanol- and ethylacetate-induced genes encoding other members of the GPR1/FUN34/YaaH family, AN5226 and AN8390.


Asunto(s)
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de la Membrana/genética , Alcohol Deshidrogenasa/genética , Aldehído Deshidrogenasa/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aspergillus nidulans/metabolismo , Secuencia de Bases , Northern Blotting , Membrana Celular/química , Secuencia Conservada , ADN de Hongos/química , ADN de Hongos/genética , Proteínas Fúngicas/química , Eliminación de Gen , Dosificación de Gen , Regulación Fúngica de la Expresión Génica , Intrones/genética , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Insercional , Sistemas de Lectura Abierta , ARN de Hongos/análisis , ARN Mensajero/análisis , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA