Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(2): 446-461.e9, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30709742

RESUMEN

Production of interleukin-17 (IL-17) and IL-22 by T helper 17 (Th17) cells and group 3 innate lymphoid cells (ILC3s) in response to the gut microbiota ensures maintenance of intestinal barrier function. Here, we examined the mechanisms whereby the immune system detects microbiota in the steady state. A Syk-kinase-coupled signaling pathway in dendritic cells (DCs) was critical for commensal-dependent production of IL-17 and IL-22 by CD4+ T cells. The Syk-coupled C-type lectin receptor Mincle detected mucosal-resident commensals in the Peyer's patches (PPs), triggered IL-6 and IL-23p19 expression, and thereby regulated function of intestinal Th17- and IL-17-secreting ILCs. Mice deficient in Mincle or with selective depletion of Syk in CD11c+ cells had impaired production of intestinal RegIIIγ and IgA and increased systemic translocation of gut microbiota. Consequently, Mincle deficiency led to liver inflammation and deregulated lipid metabolism. Thus, sensing of commensals by Mincle and Syk signaling in CD11c+ cells reinforces intestinal immune barrier and promotes host-microbiota mutualism, preventing systemic inflammation.


Asunto(s)
Células Dendríticas/inmunología , Microbioma Gastrointestinal/inmunología , Interleucina-17/inmunología , Interleucinas/inmunología , Lectinas Tipo C/inmunología , Proteínas de la Membrana/inmunología , Quinasa Syk/inmunología , Animales , Células Dendríticas/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Interleucina-17/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Ganglios Linfáticos Agregados/microbiología , Transducción de Señal/inmunología , Quinasa Syk/genética , Quinasa Syk/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Interleucina-22
2.
Am J Hum Genet ; 110(9): 1549-1563, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37543033

RESUMEN

There is currently little evidence that the genetic basis of human phenotype varies significantly across the lifespan. However, time-to-event phenotypes are understudied and can be thought of as reflecting an underlying hazard, which is unlikely to be constant through life when values take a broad range. Here, we find that 74% of 245 genome-wide significant genetic associations with age at natural menopause (ANM) in the UK Biobank show a form of age-specific effect. Nineteen of these replicated discoveries are identified only by our modeling framework, which determines the time dependency of DNA-variant age-at-onset associations without a significant multiple-testing burden. Across the range of early to late menopause, we find evidence for significantly different underlying biological pathways, changes in the signs of genetic correlations of ANM to health indicators and outcomes, and differences in inferred causal relationships. We find that DNA damage response processes only act to shape ovarian reserve and depletion for women of early ANM. Genetically mediated delays in ANM were associated with increased relative risk of breast cancer and leiomyoma at all ages and with high cholesterol and heart failure for late-ANM women. These findings suggest that a better understanding of the age dependency of genetic risk factor relationships among health indicators and outcomes is achievable through appropriate statistical modeling of large-scale biobank data.


Asunto(s)
Envejecimiento , Menopausia , Humanos , Femenino , Envejecimiento/genética , Menopausia/genética , Edad de Inicio , Ovario , Factores de Riesgo , Factores de Edad
3.
Trends Immunol ; 44(1): 44-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36464584

RESUMEN

The human microbiome is recognized as a key factor in health and disease. This has been further corroborated by identifying changes in microbiome composition and function as a novel hallmark in cancer. These effects are exerted through microbiome interactions with host cells, impacting a wide variety of developmental and physiological processes. In this review, we discuss some of the latest findings on how the bacterial component of the microbiome can influence outcomes for different cancer immunotherapy modalities, highlighting identified mechanisms of action. We also address the clinical efforts to utilize this knowledge to achieve better responses to immunotherapy. A refined understanding of microbiome variations in patients and microbiome-host interactions with cancer therapies is essential to realize optimal clinical responses.


Asunto(s)
Microbiota , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/microbiología , Inmunoterapia , Bacterias
4.
Am J Hum Genet ; 109(11): 2009-2017, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36265482

RESUMEN

Theory for liability-scale models of the underlying genetic basis of complex disease provides an important way to interpret, compare, and understand results generated from biological studies. In particular, through estimation of the liability-scale heritability (LSH), liability models facilitate an understanding and comparison of the relative importance of genetic and environmental risk factors that shape different clinically important disease outcomes. Increasingly, large-scale biobank studies that link genetic information to electronic health records, containing hundreds of disease diagnosis indicators that mostly occur infrequently within the sample, are becoming available. Here, we propose an extension of the existing liability-scale model theory suitable for estimating LSH in biobank studies of low-prevalence disease. In a simulation study, we find that our derived expression yields lower mean square error (MSE) and is less sensitive to prevalence misspecification as compared to previous transformations for diseases with ≤2% population prevalence and LSH of ≤0.45, especially if the biobank sample prevalence is less than that of the wider population. Applying our expression to 13 diagnostic outcomes of ≤3% prevalence in the UK Biobank study revealed important differences in LSH obtained from the different theoretical expressions that impact the conclusions made when comparing LSH across disease outcomes. This demonstrates the importance of careful consideration for estimation and prediction of low-prevalence disease outcomes and facilitates improved inference of the underlying genetic basis of ≤2% population prevalence diseases, especially where biobank sample ascertainment results in a healthier sample population.


Asunto(s)
Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Humanos , Prevalencia , Causalidad , Simulación por Computador
5.
Immunity ; 45(4): 788-801, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27742545

RESUMEN

C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c+ cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self.


Asunto(s)
Inmunidad Adaptativa/inmunología , Células Dendríticas/inmunología , Motivo de Activación del Inmunorreceptor Basado en Tirosina/inmunología , Lectinas Tipo C/inmunología , Leishmania major/inmunología , Proteínas de la Membrana/inmunología , Transducción de Señal/inmunología , Animales , Antígeno CD11c/inmunología , Diferenciación Celular/inmunología , Línea Celular Tumoral , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Receptores Fc/inmunología
6.
Proc Natl Acad Sci U S A ; 119(31): e2121279119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35905320

RESUMEN

Genetically informed, deep-phenotyped biobanks are an important research resource and it is imperative that the most powerful, versatile, and efficient analysis approaches are used. Here, we apply our recently developed Bayesian grouped mixture of regressions model (GMRM) in the UK and Estonian Biobanks and obtain the highest genomic prediction accuracy reported to date across 21 heritable traits. When compared to other approaches, GMRM accuracy was greater than annotation prediction models run in the LDAK or LDPred-funct software by 15% (SE 7%) and 14% (SE 2%), respectively, and was 18% (SE 3%) greater than a baseline BayesR model without single-nucleotide polymorphism (SNP) markers grouped into minor allele frequency-linkage disequilibrium (MAF-LD) annotation categories. For height, the prediction accuracy R2 was 47% in a UK Biobank holdout sample, which was 76% of the estimated [Formula: see text]. We then extend our GMRM prediction model to provide mixed-linear model association (MLMA) SNP marker estimates for genome-wide association (GWAS) discovery, which increased the independent loci detected to 16,162 in unrelated UK Biobank individuals, compared to 10,550 from BoltLMM and 10,095 from Regenie, a 62 and 65% increase, respectively. The average [Formula: see text] value of the leading markers increased by 15.24 (SE 0.41) for every 1% increase in prediction accuracy gained over a baseline BayesR model across the traits. Thus, we show that modeling genetic associations accounting for MAF and LD differences among SNP markers, and incorporating prior knowledge of genomic function, is important for both genomic prediction and discovery in large-scale individual-level studies.


Asunto(s)
Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Medicina de Precisión , Carácter Cuantitativo Heredable , Teorema de Bayes , Inglaterra , Estonia , Genómica , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
7.
Proc Natl Acad Sci U S A ; 119(47): e2213361119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36322776

RESUMEN

Severe COVID-19 is characterized by a prothrombotic state associated with thrombocytopenia, with microvascular thrombosis being almost invariably present in the lung and other organs at postmortem examination. We evaluated the presence of antibodies to platelet factor 4 (PF4)-polyanion complexes using a clinically validated immunoassay in 100 hospitalized patients with COVID-19 with moderate or severe disease (World Health Organization score, 4 to 10), 25 patients with acute COVID-19 visiting the emergency department, and 65 convalescent individuals. Anti-PF4 antibodies were detected in 95 of 100 hospitalized patients with COVID-19 (95.0%) irrespective of prior heparin treatment, with a mean optical density value of 0.871 ± 0.405 SD (range, 0.177 to 2.706). In contrast, patients hospitalized for severe acute respiratory disease unrelated to COVID-19 had markedly lower levels of the antibodies. In a high proportion of patients with COVID-19, levels of all three immunoglobulin (Ig) isotypes tested (IgG, IgM, and IgA) were simultaneously elevated. Antibody levels were higher in male than in female patients and higher in African Americans and Hispanics than in White patients. Anti-PF4 antibody levels were correlated with the maximum disease severity score and with significant reductions in circulating platelet counts during hospitalization. In individuals convalescent from COVID-19, the antibody levels returned to near-normal values. Sera from patients with COVID-19 induced higher levels of platelet activation than did sera from healthy blood donors, but the results were not correlated with the levels of anti-PF4 antibodies. These results demonstrate that the vast majority of patients with severe COVID-19 develop anti-PF4 antibodies, which may play a role in the clinical complications of COVID-19.


Asunto(s)
COVID-19 , Trombocitopenia , Humanos , Masculino , Femenino , Factor Plaquetario 4 , Heparina , Anticuerpos , Factores Inmunológicos , Índice de Severidad de la Enfermedad
8.
Artículo en Inglés | MEDLINE | ID: mdl-38895980

RESUMEN

Elevated skeletal muscle diacylglycerols (DAG) and ceramides can impair insulin signaling, and acylcarnitines (acylCN) reflect impaired fatty acid oxidation, thus the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e., postprandial) hyperinsulinemia has been shown to elevate lipids in healthy muscle and is an independent risk factor for type 2 diabetes (T2D). It is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts, thus contributing to or exacerbating insulin resistance. We investigated the impact of acute hyperinsulinemia on the muscle lipidome in order to help characterize the physiological basis in which hyperinsulinemia elevates T2D risk. Endurance athletes (n=12), sedentary lean adults (n=12), and individuals with obesity (n=13) and T2D (n=7) underwent a hyperinsulinemic-euglycemic clamp with muscle biopsies. While there were no significant differences in total 1,2-DAG fluctuations, there was a 2% decrease in athletes versus a 53% increase in T2D. C18 1,2-DAGs increased during the clamp with T2D only, which negatively correlated with insulin sensitivity. Basal muscle C18:0 ceramides were elevated with T2D, but not altered by clamp. Acylcarnitines were universally lowered during hyperinsulinemia, with more robust reductions of 80% in athletes compared to only 46% with T2D. Similar fluctuations with acute hyperinsulinemia increasing 1,2 DAGs in insulin-resistant phenotypes and universally lowering acylcarnitines were observed in male mice. In conclusion, acute hyperinsulinemia elevates muscle 1,2-DAG levels with insulin-resistant phenotypes. This suggests a possible dysregulation of intramuscular lipid metabolism in the fed state in individuals with low insulin sensitivity, which may exacerbate insulin resistance.

9.
Emerg Infect Dis ; 30(3): 599-600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407187

RESUMEN

In 2019, a melioidosis case in Maryland, USA, was shown to have been acquired from an ornamental fish tank contaminated with Burkholderia pseudomallei bacteria, likely derived from Southeast Asia. We investigated the presence of B. pseudomallei in ornamental fish tanks in the endemic area of Vientiane, Laos.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Animales , Laos/epidemiología , Burkholderia pseudomallei/genética , Melioidosis/epidemiología , Melioidosis/veterinaria , Bacterias , Peces
10.
EMBO J ; 39(23): e104523, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073387

RESUMEN

Oxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation-resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance. We integrated shotgun redox proteomics, structural systems biology, and machine learning to resolve properties determining protein damage by γ-irradiation in Escherichia coli and D. radiodurans at multiple scales. Local accessibility, charge, and lysine enrichment accurately predict ROS susceptibility. Lysine, methionine, and cysteine usage also contribute to ROS resistance of the D. radiodurans proteome. Our model predicts proteome maintenance machinery, and proteins protecting against ROS are more resistant in D. radiodurans. Our findings substantiate that protein-intrinsic protection impacts oxidative stress resistance, identifying causal molecular properties.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Estrés Oxidativo/fisiología , Proteoma/metabolismo , Envejecimiento/metabolismo , Biología Computacional , Deinococcus/metabolismo , Escherichia coli , Humanos , Aprendizaje Automático , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de Proteína
11.
Ann Allergy Asthma Immunol ; 132(2): 208-215.e1, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37898326

RESUMEN

BACKGROUND: Understanding how allergies to 1 environmental fungus can lead to cosensitization to related fungi is important for the clinical management of allergies. Cosensitization can be caused by monosensitization combined with antibody cross-reactivity, or by coexposures driving independent sensitizations. A pioneering study showed that patterns of IgE cosensitization among 17 fungal species mirror fungal phylogeny. This could reflect either epitope or habitat similarity. Thanks to an improved understanding of fungal phylogeny, larger serologic testing datasets, and environmental data on household fungi, we can now characterize the relationship between cosensitization, species similarity, and likely coexposure with greater precision. OBJECTIVE: To assess the degree to which IgE cosensitization in a group of 17 fungi can be attributed to species similarity or environmental coexposure. METHODS: Cosensitization patterns among 17 fungal species were estimated from a dataset of approximately 8 million serologic tests on 1.6 million patients. Linear regression of cosensitization on phylogenetic distance and imputed coexposure was performed. In addition, branch lengths for the phylogenetic tree were re-estimated on the basis of cosensitization and compared with corresponding phylogenetic branch lengths. RESULTS: Phylogenetic distance explains much of the observed cosensitization (adjusted r2 = .68, p < .001). Imputed environmental coexposures and test co-ordering patterns do not significantly predict cosensitization. Branch length comparisons between the cosensitization and phylogenetic trees identified several species as less cosensitizing than phylogenetic distance predicts. CONCLUSION: Combined evidence from clinical IgE testing data on fungi, along with phylogenetic and environmental exposure data, supports the hypothesis that cosensitization is caused primarily by monosensitization plus cross-reactivity, rather than multisensitization. A serologic test result should be interpreted as pointing to a group of related species that include the sensitizing agent rather than as uniquely identifying the agent. The identified patterns of cross-reactivity may help optimize test panel design.


Asunto(s)
Hipersensibilidad , Humanos , Filogenia , Hipersensibilidad/epidemiología , Ecosistema , Inmunoglobulina E , Hongos/genética
12.
Phys Chem Chem Phys ; 26(3): 1587-1601, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38131437

RESUMEN

In this perspective, we discuss how one can initiate, image, and disentangle the ultrafast elementary steps of thermal-energy chemical dynamics, building upon advances in technology and scientific insight. We propose that combinations of ultrashort mid-infrared laser pulses, controlled molecular species in the gas phase, and forefront imaging techniques allow to unravel the elementary steps of general-chemistry reaction processes in real time. We detail, for prototypical first reaction systems, experimental methods enabling these investigations, how to sufficiently prepare and promote gas-phase samples to thermal-energy reactive states with contemporary ultrashort mid-infrared laser systems, and how to image the initiated ultrafast chemical dynamics. The results of such experiments will clearly further our understanding of general-chemistry reaction dynamics.

13.
Ann Intern Med ; 176(7): 975-982, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37399548

RESUMEN

BACKGROUND: The performance of rapid antigen tests (Ag-RDTs) for screening asymptomatic and symptomatic persons for SARS-CoV-2 is not well established. OBJECTIVE: To evaluate the performance of Ag-RDTs for detection of SARS-CoV-2 among symptomatic and asymptomatic participants. DESIGN: This prospective cohort study enrolled participants between October 2021 and January 2022. Participants completed Ag-RDTs and reverse transcriptase polymerase chain reaction (RT-PCR) testing for SARS-CoV-2 every 48 hours for 15 days. SETTING: Participants were enrolled digitally throughout the mainland United States. They self-collected anterior nasal swabs for Ag-RDTs and RT-PCR testing. Nasal swabs for RT-PCR were shipped to a central laboratory, whereas Ag-RDTs were done at home. PARTICIPANTS: Of 7361 participants in the study, 5353 who were asymptomatic and negative for SARS-CoV-2 on study day 1 were eligible. In total, 154 participants had at least 1 positive RT-PCR result. MEASUREMENTS: The sensitivity of Ag-RDTs was measured on the basis of testing once (same-day), twice (after 48 hours), and thrice (after a total of 96 hours). The analysis was repeated for different days past index PCR positivity (DPIPPs) to approximate real-world scenarios where testing initiation may not always coincide with DPIPP 0. Results were stratified by symptom status. RESULTS: Among 154 participants who tested positive for SARS-CoV-2, 97 were asymptomatic and 57 had symptoms at infection onset. Serial testing with Ag-RDTs twice 48 hours apart resulted in an aggregated sensitivity of 93.4% (95% CI, 90.4% to 95.9%) among symptomatic participants on DPIPPs 0 to 6. When singleton positive results were excluded, the aggregated sensitivity on DPIPPs 0 to 6 for 2-time serial testing among asymptomatic participants was lower at 62.7% (CI, 57.0% to 70.5%), but it improved to 79.0% (CI, 70.1% to 87.4%) with testing 3 times at 48-hour intervals. LIMITATION: Participants tested every 48 hours; therefore, these data cannot support conclusions about serial testing intervals shorter than 48 hours. CONCLUSION: The performance of Ag-RDTs was optimized when asymptomatic participants tested 3 times at 48-hour intervals and when symptomatic participants tested 2 times separated by 48 hours. PRIMARY FUNDING SOURCE: National Institutes of Health RADx Tech program.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Estudios Prospectivos , SARS-CoV-2 , Reacción en Cadena de la Polimerasa , Cognición , Sensibilidad y Especificidad
14.
J Allergy Clin Immunol ; 152(6): 1658-1668, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741553

RESUMEN

BACKGROUND: Many fungal species are associated with the pathogenesis of allergic disease, yet most epidemiologic studies on IgE-mediated fungal sensitization have only included a few species. OBJECTIVE: We investigated fungal allergen sensitization prevalence, risk factors, and geographic variation in the United States. METHODS: From 2014 to 2019, a total of 7,912,504 serum-specific IgE (sIgE) test results for 17 fungal species were measured in 1,651,203 patients aged 0-85 years by a US-wide clinical laboratory. Fungal sensitization prevalence, patterns, and relationship with demographic characteristics, clinical diagnoses, and geographic regions were analyzed. RESULTS: Twenty-two percent of patients were positive (sIgE > 0.10 kUA/L) to at least 1 fungal allergen; 13.7% were positive to >2 fungal allergens. Fungal species-specific positivity rates ranged 7.4-18.6% and were highest for Candida albicans (18.6%), Alternaria alternata (16.6%), Stemphylium herbarum (14.9%), and Aspergillus fumigatus (14.2%). Other fungi that were frequently tested had relatively low positivity rates (eg, Cladosporium herbarum 11.1%, Penicillium chrysogenum 10.7%). Independent risk factors for test positivity for all fungal species included male sex, teen age (highest in those aged 10-19 years), atopic dermatitis, and asthma. Fungal sensitization was generally higher in urban areas and ecoregions composed predominantly of grasslands and prairies compared to woodlands and forest, although there was greater variation in sensitization risk to different fungi in different ecoregions. CONCLUSION: Independent risk factors for fungal sensitization include male sex, teen ages, atopic dermatitis, asthma, and ecoregion.


Asunto(s)
Asma , Dermatitis Atópica , Adolescente , Humanos , Masculino , Estados Unidos/epidemiología , Alérgenos , Prevalencia , Asma/epidemiología , Factores de Riesgo , Inmunoglobulina E , Antígenos Fúngicos
15.
Am J Psychother ; : appipsychotherapy20230024, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711402

RESUMEN

Dissociative identity disorder is a posttraumatic, psychobiological syndrome that develops over time during childhood. Despite empirical evidence supporting the validity of this diagnosis and its relation to trauma, the disorder remains a misunderstood and stigmatized condition. This article highlights expert consensus guidelines and current empirical research on the treatment of dissociative identity disorder. In addition, the authors describe the Lived Experience Advisory Panel (LEAP), which was designed to leverage the expertise of individuals with dissociative identity disorder to combat stigma and improve research, clinical programming, professional education, and public outreach related to the disorder. This article also describes how LEAP members have partnered with other researchers to create new knowledge through participatory action research in order to advance equitable service provision and effect positive change.

16.
J Infect Dis ; 227(8): 981-992, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36468309

RESUMEN

BACKGROUND: Control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission requires understanding SARS-CoV-2 replication dynamics. METHODS: We developed a multiplexed droplet digital polymerase chain reaction (ddPCR) assay to quantify SARS-CoV-2 subgenomic RNAs (sgRNAs), which are only produced during active viral replication, and discriminate them from genomic RNAs (gRNAs). We applied the assay to specimens from 144 people with single nasopharyngeal samples and 27 people with >1 sample. Results were compared to quantitative PCR (qPCR) and viral culture. RESULTS: sgRNAs were quantifiable across a range of qPCR cycle threshold (Ct) values and correlated with Ct values. The ratio sgRNA:gRNA was stable across a wide range of Ct values, whereas adjusted amounts of N sgRNA to a human housekeeping gene declined with higher Ct values. Adjusted sgRNA and gRNA amounts were quantifiable in culture-negative samples, although levels were significantly lower than in culture-positive samples. Daily testing of 6 persons revealed that sgRNA is concordant with culture results during the first week of infection but may be discordant with culture later in infection. sgRNA:gRNA is constant during infection despite changes in viral culture. CONCLUSIONS: Ct values from qPCR correlate with active viral replication. More work is needed to understand why some cultures are negative despite presence of sgRNA.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Prueba de COVID-19 , Genómica , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ARN Viral/genética , ARN Viral/análisis , SARS-CoV-2/genética , ARN Subgenómico/genética
17.
Physiol Genomics ; 55(8): 338-344, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335021

RESUMEN

Maximal aerobic exercise capacity [maximal oxygen consumption (V̇o2max)] is one of the strongest predictors of morbidity and mortality. Aerobic exercise training can increase V̇o2max, but inter-individual variability is marked and unexplained physiologically. The mechanisms underlying this variability have major clinical implications for extending human healthspan. Here, we report a novel transcriptome signature related to ΔV̇o2max with exercise training detected in whole blood RNA. We used RNA-Seq to characterize transcriptomic signatures of ΔV̇o2max in healthy women who completed a 16-wk randomized controlled trial comparing supervised, higher versus lower aerobic exercise training volume and intensity (4 training groups, fully crossed). We found significant baseline gene expression differences in subjects who responded to aerobic exercise training with robust versus little/no ΔV̇o2max, and differentially expressed genes/transcripts were mostly related to inflammatory signaling and mitochondrial function/protein translation. Baseline gene expression signatures associated with robust versus little/no ΔV̇o2max were also modulated by exercise training in a dose-dependent manner, and they predicted ΔV̇o2max in this and a separate dataset. Collectively, our data demonstrate the potential utility of using whole blood transcriptomics to study the biology of inter-individual variability in responsiveness to the same exercise training stimulus.


Asunto(s)
Entrenamiento Aeróbico , Transcriptoma , Humanos , Femenino , Transcriptoma/genética , Ejercicio Físico/fisiología , Tolerancia al Ejercicio , Consumo de Oxígeno/genética
18.
Clin Infect Dis ; 77(Suppl 1): S38-S45, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37406039

RESUMEN

BACKGROUND: Drug-resistant gram-negative (GN) pathogens are a common cause of neonatal sepsis in low- and middle-income countries. Identifying GN transmission patterns is vital to inform preventive efforts. METHODS: We conducted a prospective cohort study, 12 October 2018 to 31 October 2019 to describe the association of maternal and environmental GN colonization with bloodstream infection (BSI) among neonates admitted to a neonatal intensive care unit (NICU) in Western India. We assessed rectal and vaginal colonization in pregnant women presenting for delivery and colonization in neonates and the environment using culture-based methods. We also collected data on BSI for all NICU patients, including neonates born to unenrolled mothers. Organism identification, antibiotic susceptibility testing, and next-generation sequencing (NGS) were performed to compare BSI and related colonization isolates. RESULTS: Among 952 enrolled women who delivered, 257 neonates required NICU admission, and 24 (9.3%) developed BSI. Among mothers of neonates with GN BSI (n = 21), 10 (47.7%) had rectal, 5 (23.8%) had vaginal, and 10 (47.7%) had no colonization with resistant GN organisms. No maternal isolates matched the species and resistance pattern of associated neonatal BSI isolates. Thirty GN BSI were observed among neonates born to unenrolled mothers. Among 37 of 51 BSI with available NGS data, 21 (57%) showed a single nucleotide polymorphism distance of ≤5 to another BSI isolate. CONCLUSIONS: Prospective assessment of maternal GN colonization did not demonstrate linkage to neonatal BSI. Organism-relatedness among neonates with BSI suggests nosocomial spread, highlighting the importance of NICU infection prevention and control practices to reduce GN BSI.


Asunto(s)
Antiinfecciosos , Enfermedades Transmisibles , Infección Hospitalaria , Sepsis , Recién Nacido , Humanos , Femenino , Embarazo , Estudios Prospectivos , Unidades de Cuidado Intensivo Neonatal , Infección Hospitalaria/epidemiología , Preparaciones Farmacéuticas
19.
Clin Infect Dis ; 76(9): 1539-1549, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36528815

RESUMEN

BACKGROUND: Prior observation has shown differences in COVID-19 hospitalization risk between SARS-CoV-2 variants, but limited information describes hospitalization outcomes. METHODS: Inpatients with COVID-19 at 5 hospitals in the eastern United States were included if they had hypoxia, tachypnea, tachycardia, or fever, and SARS-CoV-2 variant data, determined from whole-genome sequencing or local surveillance inference. Analyses were stratified by history of SARS-CoV-2 vaccination or infection. The average effect of SARS-CoV-2 variant on 28-day risk of severe disease, defined by advanced respiratory support needs, or death was evaluated using models weighted on propensity scores derived from baseline clinical features. RESULTS: Severe disease or death within 28 days occurred for 977 (29%) of 3369 unvaccinated patients and 269 (22%) of 1230 patients with history of vaccination or prior SARS-CoV-2 infection. Among unvaccinated patients, the relative risk of severe disease or death for Delta variant compared with ancestral lineages was 1.30 (95% confidence interval [CI]: 1.11-1.49). Compared with Delta, the risk for Omicron patients was .72 (95% CI: .59-.88) and compared with ancestral lineages was .94 (.78-1.1). Among Omicron and Delta infections, patients with history of vaccination or prior SARS-CoV-2 infection had half the risk of severe disease or death (adjusted hazard ratio: .40; 95% CI: .30-.54), but no significant outcome difference by variant. CONCLUSIONS: Although risk of severe disease or death for unvaccinated inpatients with Omicron was lower than with Delta, it was similar to ancestral lineages. Severe outcomes were less common in vaccinated inpatients, with no difference between Delta and Omicron infections.


Asunto(s)
COVID-19 , Pacientes Internos , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Vacunas contra la COVID-19
20.
Ann Intern Med ; 175(12): 1685-1692, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36215709

RESUMEN

BACKGROUND: It is important to document the performance of rapid antigen tests (Ag-RDTs) in detecting SARS-CoV-2 variants. OBJECTIVE: To compare the performance of Ag-RDTs in detecting the Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2. DESIGN: Secondary analysis of a prospective cohort study that enrolled participants between 18 October 2021 and 24 January 2022. Participants did Ag-RDTs and collected samples for reverse transcriptase polymerase chain reaction (RT-PCR) testing every 48 hours for 15 days. SETTING: The parent study enrolled participants throughout the mainland United States through a digital platform. All participants self-collected anterior nasal swabs for rapid antigen testing and RT-PCR testing. All Ag-RDTs were completed at home, whereas nasal swabs for RT-PCR were shipped to a central laboratory. PARTICIPANTS: Of 7349 participants enrolled in the parent study, 5779 asymptomatic persons who tested negative for SARS-CoV-2 on day 1 of the study were eligible for this substudy. MEASUREMENTS: Sensitivity of Ag-RDTs on the same day as the first positive (index) RT-PCR result and 48 hours after the first positive RT-PCR result. RESULTS: A total of 207 participants were positive on RT-PCR (58 Delta, 149 Omicron). Differences in sensitivity between variants were not statistically significant (same day: Delta, 15.5% [95% CI, 6.2% to 24.8%] vs. Omicron, 22.1% [CI, 15.5% to 28.8%]; at 48 hours: Delta, 44.8% [CI, 32.0% to 57.6%] vs. Omicron, 49.7% [CI, 41.6% to 57.6%]). Among 109 participants who had RT-PCR-positive results for 48 hours, rapid antigen sensitivity did not differ significantly between Delta- and Omicron-infected participants (48-hour sensitivity: Delta, 81.5% [CI, 66.8% to 96.1%] vs. Omicron, 78.0% [CI, 69.1% to 87.0%]). Only 7.2% of the 69 participants with RT-PCR-positive results for shorter than 48 hours tested positive by Ag-RDT within 1 week; those with Delta infections remained consistently negative on Ag-RDTs. LIMITATION: A testing frequency of 48 hours does not allow a finer temporal resolution of the analysis of test performance, and the results of Ag-RDTs are based on self-report. CONCLUSION: The performance of Ag-RDTs in persons infected with the SARS-CoV-2 Omicron variant is not inferior to that in persons with Delta infections. Serial testing improved the sensitivity of Ag-RDTs for both variants. The performance of rapid antigen testing varies on the basis of duration of RT-PCR positivity. PRIMARY FUNDING SOURCE: National Heart, Lung, and Blood Institute of the National Institutes of Health.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , Estudios Prospectivos , Autoevaluación , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA