Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240393

RESUMEN

The spheroidal shape of the eye lens is crucial for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that, in the mouse lens, membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating that lamellipodium formation is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controlling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin and actin reduced the height of both early and later fibers, indicating that elongation of these fibers relies on actomyosin contractility. Consistent with this, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose that it does so through regulation of Rho activity.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Cristalino , Ratones , Animales , Cristalino/metabolismo , Epitelio/metabolismo , Actinas/metabolismo , Diferenciación Celular/fisiología
2.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180241

RESUMEN

Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataracts. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq and CUT&RUN-seq to discover previously unreported mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Furthermore, we identify an epigenetic paradigm of cellular differentiation, defined by progressive loss of the H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.


Asunto(s)
Catarata , Cristalino , Humanos , Multiómica , Catarata/genética , Diferenciación Celular/genética , Ojo
3.
Dev Biol ; 467(1-2): 1-13, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32858001

RESUMEN

Fibroblast growth factor receptor (FGFR) signaling patterns multiple tissues in both vertebrates and invertebrates, largely through the activation of intracellular kinases. Recent studies have demonstrated that the phosphatase, PTEN negatively regulates FGFR signaling, such that the loss of PTEN can compensate for reduced FGFR signaling to rescue aspects of normal development. In the developing mouse lens, FGFR signaling promotes cell survival and fiber cell differentiation, and the loss of Pten largely compensates for the loss of Fgfr2 during lens development. To explore this regulatory relationship further, we focused on the phenotypic consequences of Pten loss on lens development and fiber cell differentiation in the absence of all FGFR signaling, both in vivo and in lens epithelial explants. Pten deletion partially rescues primary fiber cell elongation and γ-crystallin accumulation in FGFR-deficient lenses in vivo but fails to rescue cell survival or proliferation. However, in lens epithelial explants, where cells survive without FGFR signaling, Pten deletion rescues vitreous humor-induced lens fiber cell differentiation in the combined absence of Fgfr1, Fgfr2 and Fgfr3. This represents the first evidence that vitreous-initiated signaling cascades, independent of FGFR signaling, can drive mammalian lens fiber cell differentiation, when freed from repression by PTEN.


Asunto(s)
Proliferación Celular , Células Epiteliales/metabolismo , Cristalino/embriología , Fosfohidrolasa PTEN/deficiencia , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Supervivencia Celular , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética
4.
Hum Genet ; 140(4): 649-666, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33389129

RESUMEN

Peroxisomes, single-membrane intracellular organelles, play an important role in various metabolic pathways. The translocation of proteins from the cytosol to peroxisomes depends on peroxisome import receptor proteins and defects in peroxisome transport result in a wide spectrum of peroxisomal disorders. Here, we report a large consanguineous family with autosomal recessive congenital cataracts and developmental defects. Genome-wide linkage analysis localized the critical interval to chromosome 12p with a maximum two-point LOD score of 4.2 (θ = 0). Next-generation exome sequencing identified a novel homozygous missense variant (c.653 T > C; p.F218S) in peroxisomal biogenesis factor 5 (PEX5), a peroxisome import receptor protein. This missense mutation was confirmed by bidirectional Sanger sequencing. It segregated with the disease phenotype in the family and was absent in ethnically matched control chromosomes. The lens-specific knockout mice of Pex5 recapitulated the cataractous phenotype. In vitro import assays revealed a normal capacity of the mutant PEX5 to enter the peroxisomal Docking/Translocation Module (DTM) in the presence of peroxisome targeting signal 1 (PTS1) cargo protein, be monoubiquitinated and exported back into the cytosol. Importantly, the mutant PEX5 protein was unable to form a stable trimeric complex with peroxisomal biogenesis factor 7 (PEX7) and a peroxisome targeting signal 2 (PTS2) cargo protein and, therefore, failed to promote the import of PTS2 cargo proteins into peroxisomes. In conclusion, we report a novel missense mutation in PEX5 responsible for the defective import of PTS2 cargo proteins into peroxisomes resulting in congenital cataracts and developmental defects.


Asunto(s)
Catarata/genética , Mutación Missense , Señales de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico Activo , Catarata/congénito , Catarata/metabolismo , Cromosomas Humanos Par 12 , Consanguinidad , Femenino , Ligamiento Genético , Humanos , Cristalino/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Proteína Sequestosoma-1/metabolismo , Secuenciación del Exoma
5.
Hum Genomics ; 13(1): 10, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770771

RESUMEN

BACKGROUND: Despite a number of different transgenes that can mediate DNA deletion in the developing lens, each has unique features that can make a given transgenic line more or less appropriate for particular studies. The purpose of this work encompasses both a review of transgenes that lead to the expression of Cre recombinase in the lens and a comparative analysis of currently available transgenic lines with a particular emphasis on the Le-Cre and P0-3.9GFPCre lines that can mediate DNA deletion in the lens placode. Although both of these transgenes are driven by elements of the Pax6 P0 promoter, the Le-Cre transgene consistently leads to ocular abnormalities in homozygous state and can lead to ocular defects on some genetic backgrounds when hemizygous. RESULT: Although both P0-3.9GFPCre and Le-Cre hemizygous transgenic mice undergo normal eye development on an FVB/N genetic background, Le-Cre homozygotes uniquely exhibit microphthalmia. Examination of the expression patterns of these two transgenes revealed similar expression in the developing eye and pancreas. However, lineage tracing revealed widespread non-ocular CRE reporter gene expression in the P0-3.9GFPCre transgenic mice that results from stochastic CRE expression in the P0-3.9GFPCre embryos prior to lens placode formation. Postnatal hemizygous Le-Cre transgenic lenses express higher levels of CRE transcript and protein than the hemizygous lenses of P0-3.9GFPCre mice. Transcriptome analysis revealed that Le-Cre hemizygous lenses deregulated the expression of 15 murine genes, several of which are associated with apoptosis. In contrast, P0-3.9GFPCre hemizygous lenses only deregulated two murine genes. No known PAX6-responsive genes or genes directly associated with lens differentiation were deregulated in the hemizygous Le-Cre lenses. CONCLUSIONS: Although P0-3.9GFPCre transgenic mice appear free from ocular abnormalities, extensive non-ocular CRE expression represents a potential problem for conditional gene deletion studies using this transgene. The higher level of CRE expression in Le-Cre lenses versus P0-3.9GFPCre lenses may explain abnormal lens development in homozygous Le-Cre mice. Given the lack of deregulation of PAX6-responsive transcripts, we suggest that abnormal eye development in Le-Cre transgenic mice stems from CRE toxicity. Our studies reinforce the requirement for appropriate CRE-only expressing controls when using CRE as a driver of conditional gene targeting strategies.


Asunto(s)
Eliminación de Gen , Integrasas/genética , Cristalino/fisiología , Ratones Transgénicos , Animales , Femenino , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Cristalino/embriología , Cristalino/fisiopatología , Ratones Endogámicos
6.
Hum Genet ; 138(11-12): 1391-1407, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31691004

RESUMEN

FGFR signaling is critical to development and disease pathogenesis, initiating phosphorylation-driven signaling cascades, notably the RAS-RAF-MEK-ERK and PI3 K-AKT cascades. PTEN antagonizes FGFR signaling by reducing AKT and ERK activation. Mouse lenses lacking FGFR2 exhibit microphakia and reduced ERK and AKT phosphorylation, widespread apoptosis, and defective lens fiber cell differentiation. In contrast, simultaneous deletion of both Fgfr2 and Pten restores ERK and AKT activation levels as well as lens size, cell survival and aspects of fiber cell differentiation; however, the molecular basis of this "rescue" remains undefined. We performed transcriptomic analysis by RNA sequencing of mouse lenses with conditional deletion of Fgfr2, Pten or both Fgfr2 and Pten, which reveal new molecular mechanisms that uncover how FGFR2 and PTEN signaling interact during development. The FGFR2-deficient lens transcriptome demonstrates overall loss of fiber cell identity with deregulated expression of 1448 genes. We find that ~ 60% of deregulated genes return to normal expression levels in lenses lacking both Fgfr2 and Pten. Further, application of customized filtering parameters to these RNA-seq data sets identified 68 high-priority candidate genes. Bioinformatics analyses showed that the cis-binding motif of a high-priority homeodomain transcription factor, NKX6-1, was present in the putative promoters of ~ 78% of these candidates. Finally, biochemical reporter assays demonstrate that NKX6-1 activated the expression of the high-priority candidate Rasgrp1, a RAS-activating protein. Together, these data define a novel regulatory module in which NKX6-1 directly activates Rasgrp1 expression to restore the balance of ERK and AKT activation, thus providing new insights into alternate regulation of FGFR downstream events.


Asunto(s)
Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Homeodominio/metabolismo , Microftalmía/prevención & control , Fosfohidrolasa PTEN/deficiencia , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/deficiencia , Transcriptoma , Animales , Diferenciación Celular , Proliferación Celular , Factores de Intercambio de Guanina Nucleótido/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Microftalmía/etiología , Microftalmía/patología , Fosforilación , Transducción de Señal
7.
Dev Biol ; 428(1): 118-134, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552735

RESUMEN

Tissue development and regeneration involve high-ordered morphogenetic processes that are governed by elements of the cytoskeleton in conjunction with cell adhesion molecules. Such processes are particularly important in the lens whose structure dictates its function. Studies of our lens-specific N-cadherin conditional knockout mouse (N-cadcKO) revealed an essential role for N-cadherin in the migration of the apical tips of differentiating lens fiber cells along the apical surfaces of the epithelium, a region termed the Epithelial Fiber Interface (EFI), that is necessary for normal fiber cell elongation and the morphogenesis. Studies of the N-cadcKO lens suggest that N-cadherin function in fiber cell morphogenesis is linked to the activation of Rac1 and myosin II, both signaling pathways central to the regulation of cell motility including determining the directionality of cellular movement. The absence of N-cadherin did not disrupt lateral contacts between fiber cells during development, and the maintenance of Aquaporin-0 and increased expression of EphA2 at cell-cell interfaces suggests that these molecules may function in this role. E-cadherin was maintained in newly differentiating fiber cells without interfering with expression of lens-specific differentiation proteins but was not able to replace N-cadherin function in these cells. The dependence of migration of the fiber cell apical domains along the EFI for lens morphogenesis on N-cadherin provides new insight into the process of tissue development.


Asunto(s)
Cadherinas/metabolismo , Diferenciación Celular/fisiología , Células Epiteliales/citología , Cristalino/embriología , Morfogénesis/fisiología , Animales , Acuaporinas/metabolismo , Cadherinas/genética , Movimiento Celular/genética , Activación Enzimática , Epitelio/fisiología , Proteínas del Ojo/metabolismo , Cristalino/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miosina Tipo II/metabolismo , Neuropéptidos/metabolismo , Receptor EphA2/biosíntesis , Proteína de Unión al GTP rac1/metabolismo
8.
Dev Biol ; 410(2): 150-163, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26764128

RESUMEN

Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIß expression in the lens fiber cells.


Asunto(s)
Supervivencia Celular/fisiología , Fosfohidrolasa PTEN/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Cristalino/embriología , Sistema de Señalización de MAP Quinasas , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/fisiología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Proteína p53 Supresora de Tumor/metabolismo
9.
Development ; 141(17): 3388-98, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25139855

RESUMEN

Lens epithelial cells and early lens fiber cells contain the typical complement of intracellular organelles. However, as lens fiber cells mature they must destroy their organelles, including nuclei, in a process that has remained enigmatic for over a century, but which is crucial for the formation of the organelle-free zone in the center of the lens that assures clarity and function to transmit light. Nuclear degradation in lens fiber cells requires the nuclease DNase IIß (DLAD) but the mechanism by which DLAD gains access to nuclear DNA remains unknown. In eukaryotic cells, cyclin-dependent kinase 1 (CDK1), in combination with either activator cyclins A or B, stimulates mitotic entry, in part, by phosphorylating the nuclear lamin proteins leading to the disassembly of the nuclear lamina and subsequent nuclear envelope breakdown. Although most post-mitotic cells lack CDK1 and cyclins, lens fiber cells maintain these proteins. Here, we show that loss of CDK1 from the lens inhibited the phosphorylation of nuclear lamins A and C, prevented the entry of DLAD into the nucleus, and resulted in abnormal retention of nuclei. In the presence of CDK1, a single focus of the phosphonuclear mitotic apparatus is observed, but it is not focused in CDK1-deficient lenses. CDK1 deficiency inhibited mitosis, but did not prevent DNA replication, resulting in an overall reduction of lens epithelial cells, with the remaining cells possessing an abnormally large nucleus. These observations suggest that CDK1-dependent phosphorylations required for the initiation of nuclear membrane disassembly during mitosis are adapted for removal of nuclei during fiber cell differentiation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Cristalino/citología , Cristalino/enzimología , Mitosis , Animales , Proteína Quinasa CDC2/deficiencia , Proteínas de Ciclo Celular , ADN/biosíntesis , Embrión de Mamíferos/citología , Embrión de Mamíferos/enzimología , Endodesoxirribonucleasas/metabolismo , Retículo Endoplásmico/metabolismo , Endorreduplicación , Células Epiteliales/citología , Células Epiteliales/enzimología , Femenino , Integrasas/metabolismo , Laminas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación
10.
Development ; 139(24): 4601-12, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23136392

RESUMEN

Most growth factor receptor tyrosine kinases (RTKs) signal through similar intracellular pathways, but they often have divergent biological effects. Therefore, elucidating the mechanism of channeling the intracellular effect of RTK stimulation to facilitate specific biological responses represents a fundamental biological challenge. Lens epithelial cells express numerous RTKs with the ability to initiate the phosphorylation (activation) of Erk1/2 and PI3-K/Akt signaling. However, only Fgfr stimulation leads to lens fiber cell differentiation in the developing mammalian embryo. Additionally, within the lens, only Fgfrs activate the signal transduction molecule Frs2α. Loss of Frs2α in the lens significantly increases apoptosis and decreases phosphorylation of both Erk1/2 and Akt. Also, Frs2α deficiency decreases the expression of several proteins characteristic of lens fiber cell differentiation, including Prox1, p57(KIP2), aquaporin 0 and ß-crystallins. Although not normally expressed in the lens, the RTK TrkC phosphorylates Frs2α in response to binding the ligand NT3. Transgenic lens epithelial cells expressing both TrkC and NT3 exhibit several features characteristic of lens fiber cells. These include elongation, increased Erk1/2 and Akt phosphorylation, and the expression of ß-crystallins. All these characteristics of NT3-TrkC transgenic lens epithelial cells depend on Frs2α. Therefore, tyrosine phosphorylation of Frs2α mediates Fgfr-dependent lens cell survival and provides a mechanistic basis for the unique fiber-differentiating capacity of Fgfs on mammalian lens epithelial cells.


Asunto(s)
Diferenciación Celular/genética , Factores de Crecimiento de Fibroblastos/fisiología , Cristalino/embriología , Proteínas de la Membrana/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Sinergismo Farmacológico , Embrión de Mamíferos , Factores de Crecimiento de Fibroblastos/farmacología , Cristalino/crecimiento & desarrollo , Cristalino/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Morfogénesis/fisiología , Ratas , Ratas Wistar , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Receptor trkC/genética , Receptor trkC/metabolismo , Receptor trkC/fisiología , Regulación hacia Arriba/genética
11.
Nature ; 461(7267): 1084-91, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19847259

RESUMEN

The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours. This was associated with the massive remodelling of the extracellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumours ameliorated disruption of the tumour microenvironment and was sufficient to decrease tumour growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumour stroma of patients with breast cancer. These findings identify the Pten-Ets2 axis as a critical stroma-specific signalling pathway that suppresses mammary epithelial tumours.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fibroblastos/metabolismo , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Fosfohidrolasa PTEN/metabolismo , Células del Estroma/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Matriz Extracelular/metabolismo , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad Innata , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Proteína Proto-Oncogénica c-ets-2/deficiencia , Proteína Proto-Oncogénica c-ets-2/metabolismo
12.
Nature ; 462(7275): 930-4, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20016602

RESUMEN

In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.


Asunto(s)
Diferenciación Celular , Factores de Transcripción E2F/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , Alelos , Animales , Apoptosis , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular , Factores de Transcripción E2F/deficiencia , Factores de Transcripción E2F/genética , Factor de Transcripción E2F1/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/deficiencia , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F2/metabolismo , Factor de Transcripción E2F3/deficiencia , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Intestino Delgado/citología , Intestino Delgado/metabolismo , Ratones , Ratones Transgénicos , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Proteína de Retinoblastoma/deficiencia , Proteína de Retinoblastoma/metabolismo
13.
Dev Dyn ; 243(10): 1298-309, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24753151

RESUMEN

BACKGROUND: Transcription factors are critical in regulating lens development. The AP-2 family of transcription factors functions in differentiation, cell growth and apoptosis, and in lens and eye development. AP-2α, in particular, is important in early lens development, and when conditionally deleted at the placode stage defective separation of the lens vesicle from the surface ectoderm results. AP-2α's role during later stages of lens development is unknown. To address this, the MLR10-Cre transgene was used to delete AP-2α from the lens epithelium beginning at embryonic day (E) 10.5. RESULTS: The loss of AP-2α after lens vesicle separation resulted in morphological defects beginning at E18.5. By P4, a small highly vacuolated lens with a multilayered epithelium was evident in the MLR10-AP-2α mutants. Epithelial cells appeared elongated and expressed fiber cell specific ßB1 and γ-crystallins. Epithelial cell polarity and lens cell adhesion was disrupted and accompanied by the misexpression of ZO-1, N-Cadherin, and ß-catenin. Cell death was observed in the mutant lens epithelium between postnatal day (P) 14 and P30, and correlated with altered arrangements of cells within the epithelium. CONCLUSIONS: Our findings demonstrate that AP-2α continues to be required after lens vesicle separation to maintain a normal lens epithelial cell phenotype and overall lens integrity and to ensure correct fiber cell differentiation.


Asunto(s)
Cristalino/fisiología , Factor de Transcripción AP-2/fisiología , Animales , Catarata/genética , Adhesión Celular/genética , Diferenciación Celular/genética , Polaridad Celular/genética , Embrión de Mamíferos , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Epitelio/metabolismo , Epitelio/fisiología , Regulación del Desarrollo de la Expresión Génica , Cristalino/embriología , Ratones , Ratones Transgénicos , Fenotipo
14.
J Biol Chem ; 288(16): 11436-47, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23479732

RESUMEN

The lens of the eye is composed of fiber cells, which differentiate from epithelial cells and undergo programmed organelle degradation during terminal differentiation. Although autophagy, a major intracellular degradation system, is constitutively active in these cells, its physiological role has remained unclear. We have previously shown that Atg5-dependent macroautophagy is not necessary for lens organelle degradation, at least during the embryonic period. Here, we generated lens-specific Atg5 knock-out mice and showed that Atg5 is not required for lens organelle degradation at any period of life. However, deletion of Atg5 in the lens results in age-related cataract, which is accompanied by accumulation of polyubiquitinated and oxidized proteins, p62, and insoluble crystallins, suggesting a defect in intracellular quality control. We also produced lens-specific Pik3c3 knock-out mice to elucidate the possible involvement of Atg5-independent alternative autophagy, which is proposed to be dependent on Pik3c3 (also known as Vps34), in lens organelle degradation. Deletion of Pik3c3 in the lens does not affect lens organelle degradation, but it leads to congenital cataract and a defect in lens development after birth likely due to an impairment of the endocytic pathway. Taken together, these results suggest that clearance of lens organelles is independent of macroautophagy. These findings also clarify the physiological role of Atg5 and Pik3c3 in quality control and development of the lens, respectively.


Asunto(s)
Catarata/embriología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Cápsula del Cristalino/embriología , Proteínas Asociadas a Microtúbulos/metabolismo , Orgánulos/metabolismo , Animales , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Catarata/genética , Catarata/patología , Fosfatidilinositol 3-Quinasas Clase III/genética , Cristalinas/genética , Cristalinas/metabolismo , Endocitosis/genética , Cápsula del Cristalino/patología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Orgánulos/genética , Orgánulos/patología , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
15.
Mol Vis ; 20: 1491-517, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25489224

RESUMEN

PURPOSE: The ocular lens contains only two cell types: epithelial cells and fiber cells. The epithelial cells lining the anterior hemisphere have the capacity to continuously proliferate and differentiate into lens fiber cells that make up the large proportion of the lens mass. To understand the transcriptional changes that take place during the differentiation process, high-throughput RNA-Seq of newborn mouse lens epithelial cells and lens fiber cells was conducted to comprehensively compare the transcriptomes of these two cell types. METHODS: RNA from three biologic replicate samples of epithelial and fiber cells from newborn FVB/N mouse lenses was isolated and sequenced to yield more than 24 million reads per sample. Sequence reads that passed quality filtering were mapped to the reference genome using Genomic Short-read Nucleotide Alignment Program (GSNAP). Transcript abundance and differential gene expression were estimated using the Cufflinks and DESeq packages, respectively. Gene Ontology enrichment was analyzed using GOseq. RNA-Seq results were compared with previously published microarray data. The differential expression of several biologically important genes was confirmed using reverse transcription (RT)-quantitative PCR (qPCR). RESULTS: Here, we present the first application of RNA-Seq to understand the transcriptional changes underlying the differentiation of epithelial cells into fiber cells in the newborn mouse lens. In total, 6,022 protein-coding genes exhibited differential expression between lens epithelial cells and lens fiber cells. To our knowledge, this is the first study identifying the expression of 254 long intergenic non-coding RNAs (lincRNAs) in the lens, of which 86 lincRNAs displayed differential expression between the two cell types. We found that RNA-Seq identified more differentially expressed genes and correlated with RT-qPCR quantification better than previously published microarray data. Gene Ontology analysis showed that genes upregulated in the epithelial cells were enriched for extracellular matrix production, cell division, migration, protein kinase activity, growth factor binding, and calcium ion binding. Genes upregulated in the fiber cells were enriched for proteosome complexes, unfolded protein responses, phosphatase activity, and ubiquitin binding. Differentially expressed genes involved in several important signaling pathways, lens structural components, organelle loss, and denucleation were also highlighted to provide insights into lens development and lens fiber differentiation. CONCLUSIONS: RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of protein-coding and non-coding transcripts from lens epithelial cells and lens fiber cells. This information provides a valuable resource for studying lens development, nuclear degradation, and organelle loss during fiber differentiation, and associated diseases.


Asunto(s)
Células Epiteliales/metabolismo , Cápsula del Cristalino/metabolismo , Corteza del Cristalino/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , Transcriptoma , Animales , Animales Recién Nacidos , Diferenciación Celular , Linaje de la Célula/genética , Proliferación Celular , Células Epiteliales/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Cápsula del Cristalino/citología , Corteza del Cristalino/citología , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo
16.
Exp Eye Res ; 121: 130-42, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24472646

RESUMEN

While the role of growth factors in lens development has been investigated extensively, the role of extracellular matrix signalling is less well understood. The developing lens expresses predominantly laminin-binding integrins (such as α3ß1, α6ß1), which are cooperatively required in the lens epithelium during development. We investigated the role of ILK, a downstream mediator of integrin signalling in mice conditionally null for Ilk. Mutant lenses showed epithelial thinning at E17.5 with reduced proliferation and epithelial cell number and aberrant fibre differentiation. There was complete loss of the central epithelium from postnatal day (P) 2 due to cell death followed by fibre cell degeneration and death by P10 as well as rupture of the lens capsule between P10 and P21. At E17.5 there was significant inhibition (∼50%) of epithelial cell cycle progression, as shown by BrdU incorporation, cyclin D1/D2 and phospho-histone H3 immunostaining. The epithelial marker, E-cadherin, was decreased progressively from E17.5 to P2, in the central epithelium, but there was no significant change in Pax6 expression. Analyses of ERK and Akt phosphorylation indicated marked depression of MAPK and PI3K-Akt signalling, which correlated with decreased phosphorylation of FRS2α and Shp2, indicating altered activation of FGF receptors. At later postnatal stages there was reduced or delayed expression of fibre cell markers (ß-crystallin and p57(kip2)). Loss of Ilk also affected deposition of extracellular matrix, with marked retention of collagen IV within differentiating fibre cells. By quantitative RT-PCR array there was significantly decreased expression of 19 genes associated with focal adhesions, actin filament stability and MAPK and PI3K/Akt signalling. Overall, these data indicate that ILK is required for complete activation of signalling cascades downstream of the FGF receptor in lens epithelium and fibre cells during development and thus is involved in epithelial proliferation, survival and subsequent fibre differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular , Supervivencia Celular/fisiología , Células Epiteliales/citología , Cristalino/embriología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Western Blotting , Cadherinas/metabolismo , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Cristalino/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Cells ; 13(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39056803

RESUMEN

Adding 50% vitreous humor to the media surrounding lens explants induces fiber cell differentiation and a significant immune/inflammatory response. While Fgfr loss blocks differentiation in lens epithelial explants, this blockage is partially reversed by deleting Pten. To investigate the functions of the Fgfrs and Pten during lens fiber cell differentiation, we utilized a lens epithelial explant system and conducted RNA sequencing on vitreous humor-exposed explants lacking Fgfrs, or Pten or both Fgfrs and Pten. We found that Fgfr loss impairs both vitreous-induced differentiation and inflammation while the additional loss of Pten restores these responses. Furthermore, transcriptomic analysis suggested that PDGFR-signaling in FGFR-deficient explants is required to mediate the rescue of vitreous-induced fiber differentiation in explants lacking both Fgfrs and Pten. The blockage of ß-crystallin induction in explants lacking both Fgfrs and Pten in the presence of a PDGFR inhibitor supports this hypothesis. Our findings demonstrate that a wide array of genes associated with fiber cell differentiation are downstream of FGFR-signaling and that the vitreous-induced immune responses also depend on FGFR-signaling. Our data also demonstrate that many of the vitreous-induced gene-expression changes in Fgfr-deficient explants are rescued in explants lacking both Fgfrs and Pten.


Asunto(s)
Diferenciación Celular , Cristalino , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Diferenciación Celular/genética , Animales , Cristalino/citología , Cristalino/metabolismo , Ratones , Transducción de Señal , Perfilación de la Expresión Génica , Transcriptoma/genética
18.
Invest Ophthalmol Vis Sci ; 65(4): 42, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38683565

RESUMEN

Purpose: Despite strong evidence demonstrating that normal lens development requires regulation governed by microRNAs (miRNAs), the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods: A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance, was conducted by miRNA sequencing. Mouse lenses lacking each of three abundantly expressed lens miRNAs (miR-184, miR-26, and miR-1) were analyzed to explore the role of these miRNAs in lens development. Results: Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4 to 6 weeks of age. RNA sequencing analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens enriched and linked to cataract (e.g., Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes) and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusions: miR-1, miR-184, and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.


Asunto(s)
Catarata , Cristalino , MicroARNs , Transcriptoma , Animales , MicroARNs/genética , Cristalino/metabolismo , Cristalino/patología , Catarata/genética , Catarata/metabolismo , Ratones , Ratones Noqueados , Animales Recién Nacidos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
19.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352453

RESUMEN

Purpose: Despite strong evidence demonstrating that normal lens development requires regulation governed by miRNAs, the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods: A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance was conducted by miRNA-seq. Mouse lenses lacking each of three abundantly expressed lens miRNAs: miR-184, miR-26 and miR-1 were analyzed to explore the role of these miRNAs in lens development. Results: Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4-6 weeks of age. RNA-seq analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens-enriched and linked to cataract (e.g. Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes), and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3 ), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusion: miR-1, miR-184 and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.

20.
Dev Dyn ; 241(3): 522-33, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22275180

RESUMEN

BACKGROUND: Disorders of the urinary tract represent a major cause of morbidity and impaired quality of life. To better understand the morphological events responsible for normal urinary tract development, we performed 3-D reconstructive analysis of developing mouse bladders in control, mgb-/-, and Fgfr2(Mes-/-) mice. RESULTS: Detrusor smooth muscle differentiation initiated in the bladder dome and progressed caudally with the leading edge extending down the right posterior surface of the bladder. Gender-specific differences in detrusor smooth muscle development were observed during early embryonic development. Bladder trigone morphology transitioned from an isosceles to equilateral triangle during development due to the preferential lengthening of the urethra to ureter distance. The primary defect observed in mgb-/- bladders was a significant reduction in detrusor smooth muscle differentiation throughout development. Deviations from normal trigone morphology correlated best with VUR development in Fgfr2(Mes-/-) mice, while alterations in intravesicular tunnel length did not. CONCLUSIONS: Multivariate morphometric analysis provides a powerful tool to quantify and assess urinary tract development.


Asunto(s)
Organogénesis , Vejiga Urinaria/anatomía & histología , Vejiga Urinaria/embriología , Animales , Femenino , Imagenología Tridimensional , Masculino , Ratones , Ratones Mutantes , Músculo Liso/anomalías , Músculo Liso/anatomía & histología , Músculo Liso/embriología , Tamaño de los Órganos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Vejiga Urinaria/anomalías , Urotelio/anatomía & histología , Urotelio/embriología , Urotelio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA