Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 51(5): 3065-3073, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28125206

RESUMEN

Standard OECD biodegradation screening tests (BSTs) have not evolved at the same rate as regulatory concerns, which now place an increased emphasis on environmental persistence. Consequently, many chemicals are falsely assigned as being potentially persistent based on results from BSTs. The present study increased test duration and increased inoculum concentrations to more environmentally relevant levels to assess their impact on biodegradation outcome and intratest replicate variability for chemicals with known environmental persistence. Chemicals were assigned to potential persistence categories based on existing degradation data. These more environmentally relevant BSTs (erBSTs) improved the reliability of persistence assignment by reducing the high variability associated with these tests and the occurrence of failures at low inoculum concentrations due to the exclusion of specific degraders. Environmental fate was determined using a reference set of 14C-labeled compounds with a range of potential environmental persistences, and full mass balance data were collated. The erBST correctly assigned five reference chemicals of known biodegradabilities to their appropriate persistence category in contrast to a standard OECD Ready Biodegradation Test (RBTs, P < 0.05). The erBST was significantly more reproducible than an OECD RBT (ANOVA, P < 0.05), with more consistent rates and extent of biodegradation observed in the erBST.


Asunto(s)
Biodegradación Ambiental , Reproducibilidad de los Resultados
2.
Sci Total Environ ; 739: 139928, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540662

RESUMEN

The development of microbial source tracking methods has resulted in an array of genetic faecal markers for assessing human health risks posed from surface water pollution. However, their use as performance metrics at wastewater treatment plants (WWTPs) has not been explored extensively. Here we compared three Bacteroides (HF183, HumM2, AllBac) and two E. coli (H8, RodA) genetic markers for summer and winter performance monitoring at twelve small rural (<250 PE) and three larger WWTPs in NE England. Small WWTPs are of interest because they are poorly understood and their impact on surface water quality may be underestimated. Overall, genetic marker data showed significant differences in treatment performance at smaller versus larger WWTPs. For example, effluent abundances of HF183 and HumM2 were significantly higher in smaller systems (p = 0.003 for HumM2; p = 0.02 for HF183). Genetic markers also showed significant differences in performance between seasons (p < 0.01, n = 120), with human-specific markers (i.e., HF183, HumM2, H8) being generally better for summer WWTP monitoring. In contrast, Bacteroides markers were much more suitable for winter monitoring, possibly because the E. coli markers are less sensitive to differences in temperature and sunlight conditions. Overall, Bacteroides markers best described WWTP treatment performance across all samples, although seasonal differences suggest caution is needed when markers are used for performance monitoring. Genetic markers definitely provide rapid and new information about WWTP performance, but more spatially diverse studies are needed to refine their use for routine WWTP monitoring.


Asunto(s)
Aguas Residuales , Microbiología del Agua , Inglaterra , Monitoreo del Ambiente , Escherichia coli , Heces , Marcadores Genéticos , Humanos , Estaciones del Año
3.
Sci Total Environ ; 695: 133923, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31756855

RESUMEN

Peri-urban aquacultures produce nutritious food in proximity to markets, but poor surface water quality in rapidly expanding megacities threatens their success in emerging economies. Our study compared, for a wide range of parameters, water quality downstream of Bangkok with aquaculture regulations and standards. For parameters not meeting those requirements, we sought to establish whether aquaculture practice or external factors were responsible. We applied conventional and advanced methods, including micropollutant analysis, genetic markers, and 16S rRNA amplicon sequencing, to investigate three family-owned aquacultures spanning extensive, semi-intensive and intensive practices. Canals draining the city of Bangkok did not meet quality standards for water to be used in aquaculture, and were sources for faecal coliforms, Bacteriodes, Prevotella, Human E. coli, tetracycline resistance genes, and nitrogen into the aquaculture ponds. Because of these inputs, aquacultures suffered algae blooms, with and without fertilizer and feed addition to the ponds. The aquacultures were sources of salinity and the herbicide diuron into the canals. Diuron was detectable in shrimp, but not at a level of concern to human health. Given the extent and nature of pollution, peri-urban water policy should prioritize charging for urban wastewater treatment over water fees for small-scale agricultural users. The extensive aquaculture attenuated per year an estimated twenty population equivalents of nitrogen pollution and trillions of faecal coliform bacteria inputs from the canal. Extensive aquacultures could thus contribute to peri-urban blue-green infrastructures providing ecosystem services to the urban population such as flood risk management, food production and water pollution attenuation.


Asunto(s)
Acuicultura , Monitoreo del Ambiente , Contaminación del Agua/análisis , Ciudades , Tailandia , Contaminación del Agua/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA