Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 79(5): 710-727, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32853546

RESUMEN

The coronavirus disease 2019 (COVID-19) that is wreaking havoc on worldwide public health and economies has heightened awareness about the lack of effective antiviral treatments for human coronaviruses (CoVs). Many current antivirals, notably nucleoside analogs (NAs), exert their effect by incorporation into viral genomes and subsequent disruption of viral replication and fidelity. The development of anti-CoV drugs has long been hindered by the capacity of CoVs to proofread and remove mismatched nucleotides during genome replication and transcription. Here, we review the molecular basis of the CoV proofreading complex and evaluate its potential as a drug target. We also consider existing nucleoside analogs and novel genomic techniques as potential anti-CoV therapeutics that could be used individually or in combination to target the proofreading mechanism.


Asunto(s)
Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Genoma Viral , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , ARN Viral/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/química , Alanina/uso terapéutico , Amidas/química , Amidas/uso terapéutico , Antivirales/química , Betacoronavirus/genética , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/virología , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Terapia Molecular Dirigida/métodos , Mutación , Neumonía Viral/virología , Pirazinas/química , Pirazinas/uso terapéutico , ARN Viral/antagonistas & inhibidores , ARN Viral/metabolismo , Ribonucleósidos/química , Ribonucleósidos/uso terapéutico , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Transcripción Genética , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
2.
Trends Biochem Sci ; 46(5): 351-365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33309323

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently creating a global health emergency. This crisis is driving a worldwide effort to develop effective vaccines, prophylactics, and therapeutics. Nucleic acid (NA)-based treatments hold great potential to combat outbreaks of coronaviruses (CoVs) due to their rapid development, high target specificity, and the capacity to increase druggability. Here, we review key anti-CoV NA-based technologies, including antisense oligonucleotides (ASOs), siRNAs, RNA-targeting clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas), and mRNA vaccines, and discuss improved delivery methods and combination therapies with other antiviral drugs.


Asunto(s)
Vacunas contra la COVID-19 , Sistemas CRISPR-Cas , ARN Mensajero , ARN Viral , SARS-CoV-2 , COVID-19/genética , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/terapia , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Humanos , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/inmunología , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
3.
EMBO J ; 40(21): e106847, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34523752

RESUMEN

The preference for nitrate over chloride through regulation of transporters is a fundamental feature of plant ion homeostasis. We show that Medicago truncatula MtNPF6.5, an ortholog of Arabidopsis thaliana AtNPF6.3/NRT1.1, can mediate nitrate and chloride uptake in Xenopus oocytes but is chloride selective and that its close homologue, MtNPF6.7, can transport nitrate and chloride but is nitrate selective. The MtNPF6.5 mutant showed greatly reduced chloride content relative to wild type, and MtNPF6.5 expression was repressed by high chloride, indicating a primary role for MtNPF6.5 in root chloride uptake. MtNPF6.5 and MtNPF6.7 were repressed and induced by nitrate, respectively, and these responses required the transcription factor MtNLP1. Moreover, loss of MtNLP1 prevented the rapid switch from chloride to nitrate as the main anion in nitrate-starved plants after nitrate provision, providing insight into the underlying mechanism for nitrate preference. Sequence analysis revealed three sub-types of AtNPF6.3 orthologs based on their predicted substrate-binding residues: A (chloride selective), B (nitrate selective), and C (legume specific). The absence of B-type AtNPF6.3 homologues in early diverged plant lineages suggests that they evolved from a chloride-selective MtNPF6.5-like protein.


Asunto(s)
Proteínas de Transporte de Anión/genética , Cloruros/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Animales , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Evolución Biológica , Transporte Biológico , Secuencia Conservada , Homeostasis , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Oocitos , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Xenopus laevis
5.
Plant Physiol ; 179(4): 1704-1722, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30710053

RESUMEN

The symbiotic infection of root cells by nitrogen-fixing rhizobia during nodulation requires the transcription factor Nodule Inception (NIN). Our root hair transcriptomic study extends NIN's regulon to include Rhizobium Polar Growth and genes involved in cell wall modification, gibberellin biosynthesis, and a comprehensive group of nutrient (N, P, and S) uptake and assimilation genes, suggesting that NIN's recruitment to nodulation was based on its role as a growth module, a role shared with other NIN-Like Proteins. The expression of jasmonic acid genes in nin suggests the involvement of NIN in the resolution of growth versus defense outcomes. We find that the regulation of the growth module component Nodulation Pectate Lyase by NIN, and its function in rhizobial infection, are conserved in hologalegina legumes, highlighting its recruitment as a major event in the evolution of nodulation. We find that Nodulation Pectate Lyase is secreted to the infection chamber and the lumen of the infection thread. Gene network analysis using the transcription factor mutants for ERF Required for Nodulation1 and Nuclear Factor-Y Subunit A1 confirms hierarchical control of NIN over Nuclear Factor-Y Subunit A1 and shows that ERF Required for Nodulation1 acts independently to control infection. We conclude that while NIN shares functions with other NIN-Like Proteins, the conscription of key infection genes to NIN's control has made it a central regulatory hub for rhizobial infection.


Asunto(s)
Medicago truncatula/genética , Proteínas de Plantas/fisiología , Rhizobium/fisiología , Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Giberelinas/biosíntesis , Medicago truncatula/microbiología , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/genética
6.
Plant Physiol ; 174(1): 326-338, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28363992

RESUMEN

Most legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roots. To test the role of auxin influx in nodulation we used the auxin influx inhibitors 1-naphthoxyacetic acid (1-NOA) and 2-NOA, which we found reduced nodulation of Medicago truncatula. This suggested the possible involvement of the AUX/LAX family of auxin influx transporters in nodulation. Gene expression studies identified MtLAX2, a paralogue of Arabidopsis (Arabidopsis thaliana) AUX1, as being induced at early stages of nodule development. MtLAX2 is expressed in nodule primordia, the vasculature of developing nodules, and at the apex of mature nodules. The MtLAX2 promoter contains several auxin response elements, and treatment with indole-acetic acid strongly induces MtLAX2 expression in roots. mtlax2 mutants displayed root phenotypes similar to Arabidopsis aux1 mutants, including altered root gravitropism, fewer lateral roots, shorter root hairs, and auxin resistance. In addition, the activity of the synthetic DR5-GUS auxin reporter was strongly reduced in mtlax2 roots. Following inoculation with rhizobia, mtlax2 roots developed fewer nodules, had decreased DR5-GUS activity associated with infection sites, and had decreased expression of the early auxin responsive gene ARF16a Our data indicate that MtLAX2 is a functional analog of Arabidopsis AUX1 and is required for the accumulation of auxin during nodule formation in tissues underlying sites of rhizobial infection.


Asunto(s)
Medicago truncatula/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Gravitropismo/genética , Ácidos Indolacéticos/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Proteínas de Transporte de Membrana/metabolismo , Mutación , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética
7.
Plant J ; 79(2): 299-311, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24861854

RESUMEN

Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α-hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific ß-glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non-cyanogenic γ- and ß-hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only ß-glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site-directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non-flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic ß-glucosidase, resembling BGD2, and required no more than a single amino acid substitution.


Asunto(s)
Glicósidos/metabolismo , Lotus/enzimología , Lotus/metabolismo , beta-Glucosidasa/metabolismo , Sustitución de Aminoácidos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Biotechnol J ; 10(7): 761-72, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22651686

RESUMEN

Targeting induced local lesions in genomes (TILLING), initially a functional genomics tool in model plants, has been extended to many plant species and become of paramount importance to reverse genetics in crops species. Because it is readily applicable to most plants, it remains a dominant non-transgenic method for obtaining mutations in known genes. The process has seen many technological changes over the last 10 years; a major recent change has been the application of next-generation sequencing (NGS) to the process, which permits multiplexing of gene targets and genomes. NGS will ultimately lead to TILLING becoming an in silico procedure. We review here the history and technology in brief, but focus more importantly on recent developments in polyploids, vegetatively propagated crops and the future of TILLING for plant breeding.


Asunto(s)
Genoma de Planta/genética , Genómica/métodos , Mutagénesis/genética , Genómica/historia , Historia del Siglo XXI , Plantas/genética , Poliploidía , Genética Inversa
9.
Plants (Basel) ; 11(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35161220

RESUMEN

Plants use seasonal cues to initiate flowering at an appropriate time of year to ensure optimal reproductive success. The circadian clock integrates these daily and seasonal cues with internal cues to initiate flowering. The molecular pathways that control the sensitivity of flowering to photoperiods (daylengths) are well described in the model plant Arabidopsis. However, much less is known for crop species, such as legumes. Here, we performed a flowering time screen of a TILLING population of Medicago truncatula and found a line with late-flowering and altered light-sensing phenotypes. Using RNA sequencing, we identified a nonsense mutation in the Phytochromobilin synthase (MtPΦBS) gene, which encodes an enzyme that carries out the final step in the biosynthesis of the chromophore required for phytochrome (phy) activity. The analysis of the circadian clock in the MtpΦbs mutant revealed a shorter circadian period, which was shared with the MtphyA mutant. The MtpΦbs and MtphyA mutants showed downregulation of the FT floral regulators MtFTa1 and MtFTb1/b2 and a change in phase for morning and night core clock genes. Our findings show that phyA is necessary to synchronize the circadian clock and integration of light signalling to precisely control the timing of flowering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA