RESUMEN
The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the development of stromal-targeted therapies. Single-cell RNA sequencing of five TNBCs revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL) subpopulations. CAFs clustered into two states: the first with features of myofibroblasts and the second characterised by high expression of growth factors and immunomodulatory molecules. PVL cells clustered into two states consistent with a differentiated and immature phenotype. We showed that these stromal states have distinct morphologies, spatial relationships and functional properties in regulating the extracellular matrix. Using cell signalling predictions, we provide evidence that stromal-immune crosstalk acts via a diverse array of immunoregulatory molecules. Importantly, the investigation of gene signatures from inflammatory-CAFs and differentiated-PVL cells in independent TNBC patient cohorts revealed strong associations with cytotoxic T-cell dysfunction and exclusion, respectively. Such insights present promising candidates to further investigate for new therapeutic strategies in the treatment of TNBCs.
Asunto(s)
Neoplasias de la Mama Triple Negativas/inmunología , Escape del Tumor , Matriz Extracelular/inmunología , Matriz Extracelular/patología , Femenino , Humanos , RNA-Seq , Células del Estroma/inmunología , Células del Estroma/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Acquired resistance to endocrine therapy is responsible for half of the therapeutic failures in the treatment of breast cancer. Recent findings have implicated increased expression of the ETS transcription factor ELF5 as a potential modulator of estrogen action and driver of endocrine resistance, and here we provide the first insight into the mechanisms by which ELF5 modulates estrogen sensitivity. Using chromatin immunoprecipitation sequencing we found that ELF5 binding overlapped with FOXA1 and ER at super enhancers, enhancers and promoters, and when elevated, caused FOXA1 and ER to bind to new regions of the genome, in a pattern that replicated the alterations to the ER/FOXA1 cistrome caused by the acquisition of resistance to endocrine therapy. RNA sequencing demonstrated that these changes altered estrogen-driven patterns of gene expression, the expression of ER transcription-complex members, and 6 genes known to be involved in driving the acquisition of endocrine resistance. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, and proximity ligation assays, we found that ELF5 interacted physically with members of the ER transcription complex, such as DNA-PKcs. We found 2 cases of endocrine-resistant brain metastases where ELF5 levels were greatly increased and ELF5 patterns of gene expression were enriched, compared to the matched primary tumour. Thus ELF5 alters ER-driven gene expression by modulating the ER/FOXA1 cistrome, by interacting with it, and by modulating the expression of members of the ER transcriptional complex, providing multiple mechanisms by which ELF5 can drive endocrine resistance.
Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Receptores de Estrógenos/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Células MCF-7 , Ratones , Unión ProteicaRESUMEN
The latency associated with bone metastasis emergence in castrate-resistant prostate cancer is attributed to dormancy, a state in which cancer cells persist prior to overt lesion formation. Using single-cell transcriptomics and ex vivo profiling, we have uncovered the critical role of tumor-intrinsic immune signaling in the retention of cancer cell dormancy. We demonstrate that loss of tumor-intrinsic type I IFN occurs in proliferating prostate cancer cells in bone. This loss suppresses tumor immunogenicity and therapeutic response and promotes bone cell activation to drive cancer progression. Restoration of tumor-intrinsic IFN signaling by HDAC inhibition increased tumor cell visibility, promoted long-term antitumor immunity, and blocked cancer growth in bone. Key findings were validated in patients, including loss of tumor-intrinsic IFN signaling and immunogenicity in bone metastases compared to primary tumors. Data herein provide a rationale as to why current immunotherapeutics fail in bone-metastatic prostate cancer, and provide a new therapeutic strategy to overcome the inefficacy of immune-based therapies in solid cancers.
Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Humanos , Interferones , Masculino , Neoplasias de la Próstata/genética , Transducción de SeñalRESUMEN
The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.
Asunto(s)
Mieloma Múltiple/genética , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/genética , Células Madre Neoplásicas/patología , Nicho de Células Madre/genética , Animales , Humanos , Ratones , Recurrencia Local de Neoplasia/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transcriptoma , Tirosina Quinasa del Receptor AxlRESUMEN
We identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved in mammary development. The mutation caused post-partum failure of lactation in healthy mice with otherwise normally developed mammary glands, characterized by greatly reduced milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11 or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in the mouse. The mutation activates the OAS2 pathway, demonstrated by a 34-fold increase in RNase L activity, and its effects were dependent on expression of RNase L and IRF7, proximal and distal pathway members. This is the first report of a viral recognition pathway regulating lactation.
Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , Lactancia/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Nucleótidos de Adenina/metabolismo , Animales , Técnicas de Cultivo de Célula , Endorribonucleasas/metabolismo , Femenino , Humanos , Glándulas Mamarias Animales/metabolismo , Ratones , Leche , Mutación/genética , Oligorribonucleótidos/metabolismo , ARN Bicatenario/metabolismo , Transducción de Señal/genéticaRESUMEN
During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.
Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Pulmonares/secundario , Pulmón/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/fisiopatología , Neoplasias de la Mama/virología , Permeabilidad Capilar , Proliferación Celular , Proteínas de Unión al ADN , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemorragia/etiología , Hemorragia/prevención & control , Humanos , Leucocitos/inmunología , Leucocitos/patología , Pulmón/irrigación sanguínea , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/prevención & control , Depleción Linfocítica , Ratones Transgénicos , Células Mieloides/inmunología , Células Mieloides/patología , Proteínas de Neoplasias/genética , Neovascularización Patológica/etiología , Neovascularización Patológica/prevención & control , Infiltración Neutrófila , Poliomavirus/patogenicidad , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Supervivencia , Factores de Transcripción , Carga TumoralRESUMEN
BACKGROUND: E74-like factor 5 (ELF5) is an epithelial-specific member of the E26 transforming sequence (ETS) transcription factor family and a critical regulator of cell fate in the placenta, pulmonary bronchi, and milk-producing alveoli of the mammary gland. ELF5 also plays key roles in malignancy, particularly in basal-like and endocrine-resistant forms of breast cancer. Almost all genes undergo alternative transcription or splicing, which increases the diversity of protein structure and function. Although ELF5 has multiple isoforms, this has not been considered in previous studies of ELF5 function. METHODS: RNA-sequencing data for 6757 samples from The Cancer Genome Atlas were analyzed to characterize ELF5 isoform expression in multiple normal tissues and cancers. Extensive in vitro analysis of ELF5 isoforms, including a 116-gene quantitative polymerase chain reaction panel, was performed in breast cancer cell lines. RESULTS: ELF5 isoform expression was found to be tissue-specific due to alternative promoter use but altered in multiple cancer types. The normal breast expressed one main isoform, while in breast cancer there were subtype-specific alterations in expression. Expression of other ETS factors was also significantly altered in breast cancer, with the basal-like subtype demonstrating a distinct ETS expression profile. In vitro inducible expression of the full-length isoforms 1 and 2, as well as isoform 3 (lacking the Pointed domain) had similar phenotypic and transcriptional effects. CONCLUSIONS: Alternative promoter use, conferring differential regulatory responses, is the main mechanism governing ELF5 action rather than differential transcriptional activity of the isoforms. This understanding of expression and function at the isoform level is a vital first step in realizing the potential of transcription factors such as ELF5 as prognostic markers or therapeutic targets in cancer.
Asunto(s)
Empalme Alternativo/genética , Proteínas de Unión al ADN/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Animales , Proteínas de Unión al ADN/biosíntesis , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Glándulas Mamarias Humanas/patología , Neoplasias/patología , Especificidad de Órganos , Embarazo , Regiones Promotoras Genéticas , Isoformas de Proteínas/biosíntesis , Proteínas Proto-Oncogénicas c-ets/biosíntesis , Factores de TranscripciónRESUMEN
Wild-type TP53 exons 5-8 contain CpG dinucleotides that are prone to methylation-dependent mutation during carcinogenesis, but the regulatory effects of methylation affecting these CpG sites are unclear. To clarify this, we first assessed site-specific TP53 CpG methylation in normal and transformed cells. Both DNA damage and cell ageing were associated with site-specific CpG demethylation in exon 5 accompanied by induction of a truncated TP53 isoform regulated by an adjacent intronic promoter (P2). We then synthesized novel synonymous TP53 alleles with divergent CpG content but stable encodement of the wild-type polypeptide. Expression of CpG-enriched TP53 constructs selectively reduced production of the full-length transcript (P1), consistent with a causal relationship between intragenic demethylation and transcription. 450K methylation comparison of normal (TP53-wildtype) and cancerous (TP53-mutant) human cells and tissues revealed focal cancer-associated declines in CpG methylation near the P1 transcription start site, accompanied by rises near the alternate exon 5 start site. These data confirm that site-specific changes of intragenic TP53 CpG methylation are extrinsically inducible, and suggest that human cancer progression is mediated in part by dysregulation of damage-inducible intragenic CpG demethylation that alters TP53 P1/P2 isoform expression. © 2015 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.
Asunto(s)
Islas de CpG , Daño del ADN , Metilación de ADN , Genes p53 , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Animales , Secuencia de Bases , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Exones , Regulación Neoplásica de la Expresión Génica , Humanos , Intrones , Ratones , Regiones Promotoras Genéticas , Activación TranscripcionalRESUMEN
INTRODUCTION: The study of mammalian development has offered many insights into the molecular aetiology of cancer. We previously used analysis of mammary morphogenesis to discover a critical role for GATA-3 in mammary developmental and carcinogenesis. In recent years an important role for microRNAs (miRNAs) in a myriad of cellular processes in development and in oncogenesis has emerged. METHODS: microRNA profiling was conducted on stromal and epithelial cellular subsets microdissected from the pubertal mouse mammary gland. miR-184 was reactivated by transient or stable overexpression in breast cancer cell lines and examined using a series of in vitro (proliferation, tumour-sphere and protein synthesis) assays. Orthotopic xenografts of breast cancer cells were used to assess the effect of miR-184 on tumourigenesis as well as distant metastasis. Interactions between miR-184 and its putative targets were assessed by quantitative PCR, microarray, bioinformatics and 3' untranslated region Luciferase reporter assay. The methylation status of primary patient samples was determined by MBD-Cap sequencing. Lastly, the clinical prognostic significance of miR-184 putative targets was assessed using publicly available datasets. RESULTS: A large number of microRNA were restricted in their expression to specific tissue subsets. MicroRNA-184 (miR-184) was exclusively expressed in epithelial cells and markedly upregulated during differentiation of the proliferative, invasive cells of the pubertal terminal end bud (TEB) into ductal epithelial cells in vivo. miR-184 expression was silenced in mouse tumour models compared to non-transformed epithelium and in a majority of breast cancer cell line models. Ectopic reactivation of miR-184 inhibited the proliferation and self-renewal of triple negative breast cancer (TNBC) cell lines in vitro and delayed primary tumour formation and reduced metastatic burden in vivo. Gene expression studies uncovered multi-factorial regulation of genes in the AKT/mTORC1 pathway by miR-184. In clinical breast cancer tissues, expression of miR-184 is lost in primary TNBCs while the miR-184 promoter is methylated in a subset of lymph node metastases from TNBC patients. CONCLUSIONS: These studies elucidate a new layer of regulation in the PI3K/AKT/mTOR pathway with relevance to mammary development and tumour progression and identify miR-184 as a putative breast tumour suppressor.
Asunto(s)
Neoplasias de la Mama/genética , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Glándulas Mamarias Animales/metabolismo , MicroARNs/genética , Maduración Sexual/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Análisis por Conglomerados , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Ratones , Metástasis de la Neoplasia , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Though the majority of kidney allografts are eventually lost to the process of chronic rejection, there are instances when kidney function is maintained after patients have stopped their immunosuppression. Baron and colleagues have examined the blood gene signature of patients with spontaneous kidney tolerance and identified a series of genes that they suggest define kidney graft acceptance. This exciting development provides a potential list of biomarkers defining immunological tolerance in humans.
Asunto(s)
Aloinjertos/inmunología , Tolerancia Inmunológica/genética , Trasplante de Riñón , HumanosRESUMEN
We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive luminal breast cancer cells and interrogated them using transcript profiling and chromatin immunoprecipitation of DNA followed by DNA sequencing (ChIP-Seq). ELF5 suppressed ER and FOXA1 expression and broadly suppressed ER-driven patterns of gene expression including sets of genes distinguishing the luminal molecular subtype. Direct transcriptional targets of ELF5, which included FOXA1, EGFR, and MYC, accurately classified a large cohort of breast cancers into their intrinsic molecular subtypes, predicted ER status with high precision, and defined groups with differential prognosis. Knockdown of ELF5 in basal breast cancer cell lines suppressed basal patterns of gene expression and produced a shift in molecular subtype toward the claudin-low and normal-like groups. Luminal breast cancer cells that acquired resistance to the antiestrogen Tamoxifen showed greatly elevated levels of ELF5 and its transcriptional signature, and became dependent on ELF5 for proliferation, compared to the parental cells. Thus ELF5 provides a key transcriptional determinant of breast cancer molecular subtype by suppression of estrogen sensitivity in luminal breast cancer cells and promotion of basal characteristics in basal breast cancer cells, an action that may be utilised to acquire antiestrogen resistance.
Asunto(s)
Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Estrógenos/farmacología , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Sitios de Unión , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adhesión Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma Humano/genética , Humanos , Ratones , Modelos Biológicos , Fenotipo , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-ets/genética , Análisis de Secuencia de ADN , Factores de Transcripción , Transcripción Genética/efectos de los fármacosRESUMEN
Cancers evade the immune system through the process of cancer immunoediting. While immune checkpoint inhibitors are effective for reactivating tumour immunity in some cancer types, many other solid cancers, including breast cancer, remain largely non-responsive. Understanding how non-responsive cancers evade immunity and whether this occurs at the clonal level will improve immunotherapeutic design. Here we use DNA barcoding to track murine mammary cancer cell clones during immunoediting and determine clonal transcriptional profiles that allow immune evasion following anti-PD1 plus anti-CTLA4 immunotherapy. Clonal diversity is significantly restricted by immunotherapy treatment in both primary tumours and metastases, demonstrating selection for pre-existing breast cancer cell populations and ongoing immunoediting during metastasis and treatment. Immunotherapy resistant clones express a common gene signature associated with poor survival of basal-like breast cancer patient cohorts. At least one of these genes has an existing small molecule that can potentially be used to improve immunotherapy response.
Asunto(s)
Neoplasias de la Mama , Código de Barras del ADN Taxonómico , Humanos , Ratones , Animales , Femenino , Inmunoterapia , Factores Inmunológicos , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Estudios LongitudinalesRESUMEN
BACKGROUND: High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. METHODS: Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. RESULTS: Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. CONCLUSIONS: We show that the viable cryopreservation of human cancers provides high-quality single-cells for multi-omics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies.
Asunto(s)
Bancos de Muestras Biológicas , Criopreservación , Genómica , Neoplasias/diagnóstico , Análisis de la Célula Individual , Biomarcadores de Tumor , Criopreservación/métodos , Criopreservación/normas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunofenotipificación , Neoplasias/etiología , Especificidad de Órganos/genética , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Análisis de la Célula Individual/métodosRESUMEN
The basic helix-loop-helix (bHLH) transcription factors inhibitor of differentiation 1 (Id1) and inhibitor of differentiation 3 (Id3) (referred to as Id) have an important role in maintaining the cancer stem cell (CSC) phenotype in the triple-negative breast cancer (TNBC) subtype. In this study, we aimed to understand the molecular mechanism underlying Id control of CSC phenotype and exploit it for therapeutic purposes. We used two different TNBC tumor models marked by either Id depletion or Id1 expression in order to identify Id targets using a combinatorial analysis of RNA sequencing and microarray data. Phenotypically, Id protein depletion leads to cell cycle arrest in the G0/G1 phase, which we demonstrate is reversible. In order to understand the molecular underpinning of Id proteins on the cell cycle phenotype, we carried out a large-scale small interfering RNA (siRNA) screen of 61 putative targets identified by using genomic analysis of two Id TNBC tumor models. Kinesin Family Member 11 (Kif11) and Aurora Kinase A (Aurka), which are critical cell cycle regulators, were further validated as Id targets. Interestingly, unlike in Id depletion conditions, Kif11 and Aurka knockdown leads to a G2/M arrest, suggesting a novel Id cell cycle mechanism, which we will explore in further studies. Therapeutic targeting of Kif11 to block the Id1-Kif11 axis was carried out using small molecular inhibitor ispinesib. We finally leveraged our findings to target the Id/Kif11 pathway using the small molecule inhibitor ispinesib in the Id+ CSC results combined with chemotherapy for better response in TNBC subtypes. This work opens up exciting new possibilities of targeting Id targets such as Kif11 in the TNBC subtype, which is currently refractory to chemotherapy. Targeting the Id1-Kif11 molecular pathway in the Id1+ CSCs in combination with chemotherapy and small molecular inhibitor results in more effective debulking of TNBC.
Asunto(s)
Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Cinesinas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Benzamidas/farmacología , Ciclo Celular/genética , Línea Celular Tumoral , Autorrenovación de las Células/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Paclitaxel/farmacología , Quinazolinas/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Breast cancers display phenotypic and functional heterogeneity and several lines of evidence support the existence of cancer stem cells (CSCs) in certain breast cancers, a minor population of cells capable of tumor initiation and metastatic dissemination. Identifying factors that regulate the CSC phenotype is therefore important for developing strategies to treat metastatic disease. The Inhibitor of Differentiation Protein 1 (Id1) and its closely related family member Inhibitor of Differentiation 3 (Id3) (collectively termed Id) are expressed by a diversity of stem cells and are required for metastatic dissemination in experimental models of breast cancer. In this study, we show that ID1 is expressed in rare neoplastic cells within ER-negative breast cancers. To address the function of Id1 expressing cells within tumors, we developed independent murine models of Triple Negative Breast Cancer (TNBC) in which a genetic reporter permitted the prospective isolation of Id1+ cells. Id1+ cells are enriched for self-renewal in tumorsphere assays in vitro and for tumor initiation in vivo. Conversely, depletion of Id1 and Id3 in the 4T1 murine model of TNBC demonstrates that Id1/3 are required for cell proliferation and self-renewal in vitro, as well as primary tumor growth and metastatic colonization of the lung in vivo. Using combined bioinformatic analysis, we have defined a novel mechanism of Id protein function via negative regulation of the Roundabout Axon Guidance Receptor Homolog 1 (Robo1) leading to activation of a Myc transcriptional programme.
RESUMEN
BACKGROUND & AIMS: The early events by which inflammation promotes cancer are still not fully defined. The MCC gene is silenced by promoter methylation in colitis-associated and sporadic colon tumors, but its functional significance in precancerous lesions or polyps is not known. Here, we aimed to determine the impact of Mcc deletion on the cellular pathways and carcinogenesis associated with inflammation in the mouse proximal colon. METHODS: We generated knockout mice with deletion of Mcc in the colonic/intestinal epithelial cells (MccΔIEC) or in the whole body (MccΔ/Δ). Drug-induced lesions were analyzed by transcriptome profiling (at 10 weeks) and histopathology (at 20 weeks). Cell-cycle phases and DNA damage proteins were analyzed by flow cytometry and Western blot of hydrogen peroxide-treated mouse embryo fibroblasts. RESULTS: Transcriptome profiling of the lesions showed a strong response to colon barrier destruction, such as up-regulation of key inflammation and cancer-associated genes as well as 28 interferon γ-induced guanosine triphosphatase genes, including the homologs of Crohn's disease susceptibility gene IRGM. These features were shared by both Mcc-expressing and Mcc-deficient mice and many of the altered gene expression pathways were similar to the mesenchymal colorectal cancer subtype known as consensus molecular subtype 4 (CMS4). However, Mcc deletion was required for increased carcinogenesis in the lesions, with adenocarcinoma in 59% of MccΔIEC compared with 19% of Mcc-expressing mice (P = .002). This was not accompanied by hyperactivation of ß-catenin, but Mcc deletion caused down-regulation of DNA repair genes and a disruption of DNA damage signaling. CONCLUSIONS: Loss of Mcc may promote cancer through a failure to repair inflammation-induced DNA damage. We provide a comprehensive transcriptome data set of early colorectal lesions and evidence for the in vivo significance of MCC silencing in colorectal cancer.
Asunto(s)
Neoplasias Colorrectales/genética , Eliminación de Gen , Genes MCC , Inflamación/genética , Animales , Cadherinas/metabolismo , Colon/efectos de los fármacos , Colon/patología , Neoplasias Colorrectales/patología , Reparación del ADN/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , GTP Fosfohidrolasas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inflamación/patología , Interferón gamma/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , beta Catenina/metabolismoRESUMEN
Basal-like breast cancer (BLBC) is a heterogeneous disease with poor prognosis; however, its cellular origins and aetiology are poorly understood. In this study, we show that inhibitor of differentiation 4 (ID4) is a key regulator of mammary stem cell self-renewal and marks a subset of BLBC with a putative mammary basal cell of origin. Using an ID4GFP knock-in reporter mouse and single-cell transcriptomics, we show that ID4 marks a stem cell-enriched subset of the mammary basal cell population. ID4 maintains the mammary stem cell pool by suppressing key factors required for luminal differentiation. Furthermore, ID4 is specifically expressed by a subset of human BLBC that possess a very poor prognosis and a transcriptional signature similar to a mammary stem cell. These studies identify ID4 as a mammary stem cell regulator, deconvolute the heterogeneity of BLBC and link a subset of mammary stem cells to the aetiology of BLBC.
Asunto(s)
Neoplasias de la Mama/genética , Proteínas Inhibidoras de la Diferenciación/genética , Glándulas Mamarias Animales/citología , ARN Mensajero/metabolismo , Células Madre/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Técnicas de Sustitución del Gen , Humanos , Proteínas Inhibidoras de la Diferenciación/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Trasplante de Neoplasias , Fenotipo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
SUMMARY: Complex human diseases can show significant heterogeneity between patients with the same phenotypic disorder. An outlier detection strategy was developed to identify variants at the level of gene transcription that are of potential biological and phenotypic importance. Here we describe a graphical software package (z-score outlier detection (ZODET)) that enables identification and visualisation of gross abnormalities in gene expression (outliers) in individuals, using whole genome microarray data. Mean and standard deviation of expression in a healthy control cohort is used to detect both over and under-expressed probes in individual test subjects. We compared the potential of ZODET to detect outlier genes in gene expression datasets with a previously described statistical method, gene tissue index (GTI), using a simulated expression dataset and a publicly available monocyte-derived macrophage microarray dataset. Taken together, these results support ZODET as a novel approach to identify outlier genes of potential pathogenic relevance in complex human diseases. The algorithm is implemented using R packages and Java. AVAILABILITY: The software is freely available from http://www.ucl.ac.uk/medicine/molecular-medicine/publications/microarray-outlier-analysis.