Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 295(1): 146-157, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31757807

RESUMEN

Cohesin is a chromatin-bound complex that mediates sister chromatid cohesion and facilitates long-range interactions through DNA looping. How the transcription and replication machineries deal with the presence of cohesin on chromatin remains unclear. The dynamic association of cohesin with chromatin depends on WAPL cohesin release factor (WAPL) and on PDS5 cohesin-associated factor (PDS5), which exists in two versions in vertebrate cells, PDS5A and PDS5B. Using genetic deletion in mouse embryo fibroblasts and a combination of CRISPR-mediated gene editing and RNAi-mediated gene silencing in human cells, here we analyzed the consequences of PDS5 depletion for DNA replication. We found that either PDS5A or PDS5B is sufficient for proper cohesin dynamics and that their simultaneous removal increases cohesin's residence time on chromatin and slows down DNA replication. A similar phenotype was observed in WAPL-depleted cells. Cohesin down-regulation restored normal replication fork rates in PDS5-deficient cells, suggesting that chromatin-bound cohesin hinders the advance of the replisome. We further show that PDS5 proteins are required to recruit WRN helicase-interacting protein 1 (WRNIP1), RAD51 recombinase (RAD51), and BRCA2 DNA repair associated (BRCA2) to stalled forks and that in their absence, nascent DNA strands at unprotected forks are degraded by MRE11 homolog double-strand break repair nuclease (MRE11). These findings indicate that PDS5 proteins participate in replication fork protection and also provide insights into how cohesin and its regulators contribute to the response to replication stress, a common feature of cancer cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Proteína BRCA2/metabolismo , Células Cultivadas , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Proteína Homóloga de MRE11/metabolismo , Ratones , Proteínas Nucleares/genética , Recombinasa Rad51/metabolismo , Factores de Transcripción/genética , Cohesinas
2.
EMBO J ; 32(22): 2938-49, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24141881

RESUMEN

Cohesin mediates sister chromatid cohesion and contributes to the organization of interphase chromatin through DNA looping. In vertebrate somatic cells, cohesin consists of Smc1, Smc3, Rad21, and either SA1 or SA2. Three additional factors Pds5, Wapl, and Sororin bind to cohesin and modulate its dynamic association with chromatin. There are two Pds5 proteins in vertebrates, Pds5A and Pds5B, but their functional specificity remains unclear. Here, we demonstrate that Pds5 proteins are essential for cohesion establishment by allowing Smc3 acetylation by the cohesin acetyl transferases (CoATs) Esco1/2 and binding of Sororin. While both proteins contribute to telomere and arm cohesion, Pds5B is specifically required for centromeric cohesion. Furthermore, reduced accumulation of Aurora B at the inner centromere region in cells lacking Pds5B impairs its error correction function, promoting chromosome mis-segregation and aneuploidy. Our work supports a model in which the composition and function of cohesin complexes differs between different chromosomal regions.


Asunto(s)
Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/fisiología , Centrómero/enzimología , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Factores de Transcripción/fisiología , Aneuploidia , Animales , Proliferación Celular , Células Cultivadas , Desarrollo Embrionario/fisiología , Ratones , Cohesinas
3.
EMBO J ; 31(6): 1467-79, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22274615

RESUMEN

Shugoshins (Sgo) are conserved proteins that act as protectors of centromeric cohesion and as sensors of tension for the machinery that eliminates improper kinetochore-microtubule attachments. Most vertebrates contain two Sgo proteins, but their specific functions are not always clear. Xenopus laevis Sgo1, XSgo1, protects centromeric cohesin from the prophase dissociation pathway. Here, we report the identification of XSgo2 and show that it does not regulate cohesion. Instead, we find that it participates in bipolar spindle assembly. Both Sgo proteins interact physically with the Chromosomal Passenger Complex (CPC) containing Aurora B, a key regulator of mitosis, but the functional consequences of such interaction are distinct. XSgo1 is required for proper localization of the CPC while XSgo2 positively contributes to its activation and the subsequent phosphorylation of at least one key substrate for bipolar spindle assembly, the microtubule depolymerizing kinesin MCAK (Mitotic Centromere-Associated Kinesin). Thus, the two Xenopus Sgo proteins have non-overlapping functions in chromosome segregation. Our results further suggest that this functional specificity could rely on the association of XSgo1 and XSgo2 with different regulatory subunits of the PP2A complex.


Asunto(s)
Segregación Cromosómica , Proteínas Nucleares/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Animales , Aurora Quinasas , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis/genética , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/genética , Cohesinas
4.
Nat Commun ; 14(1): 1326, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898992

RESUMEN

Cohesin organizes the genome through the formation of chromatin loops. NIPBL activates cohesin's ATPase and is essential for loop extrusion, but its requirement for cohesin loading is unclear. Here we have examined the effect of reducing NIPBL levels on the behavior of the two cohesin variants carrying STAG1 or STAG2 by combining a flow cytometry assay to measure chromatin-bound cohesin with analyses of its genome-wide distribution and genome contacts. We show that NIPBL depletion results in increased cohesin-STAG1 on chromatin that further accumulates at CTCF positions while cohesin-STAG2 diminishes genome-wide. Our data are consistent with a model in which NIPBL may not be required for chromatin association of cohesin but it is for loop extrusion, which in turn facilitates stabilization of cohesin-STAG2 at CTCF positions after being loaded elsewhere. In contrast, cohesin-STAG1 binds chromatin and becomes stabilized at CTCF sites even under low NIPBL levels, but genome folding is severely impaired.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Cohesinas
5.
Epigenetics Chromatin ; 15(1): 37, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424654

RESUMEN

BACKGROUND: The cohesin complex organizes the genome-forming dynamic chromatin loops that impact on all DNA-mediated processes. There are two different cohesin complexes in vertebrate somatic cells, carrying the STAG1 or STAG2 subunit, and two versions of the regulatory subunit PDS5, PDS5A and PDS5B. Mice deficient for any of the variant subunits are embryonic lethal, which indicates that they are not functionally redundant. However, their specific behavior at the molecular level is not fully understood. RESULTS: The genome-wide distribution of cohesin provides important information with functional consequences. Here, we have characterized the distribution of cohesin subunits and regulators in mouse embryo fibroblasts (MEFs) either wild type or deficient for cohesin subunits and regulators by chromatin immunoprecipitation and deep sequencing. We identify non-CTCF cohesin-binding sites in addition to the commonly detected CTCF cohesin sites and show that cohesin-STAG2 is the preferred variant at these positions. Moreover, this complex has a more dynamic association with chromatin as judged by fluorescence recovery after photobleaching (FRAP), associates preferentially with WAPL and is more easily extracted from chromatin with salt than cohesin-STAG1. We observe that both PDS5A and PDS5B are exclusively located at cohesin-CTCF positions and that ablation of a single paralog has no noticeable consequences for cohesin distribution while double knocked out cells show decreased accumulation of cohesin at all its binding sites. With the exception of a fraction of cohesin positions in which we find binding of all regulators, including CTCF and WAPL, the presence of NIPBL and PDS5 is mutually exclusive, consistent with our immunoprecipitation analyses in mammalian cell extracts and previous results in yeast. CONCLUSION: Our findings support the idea that non-CTCF cohesin-binding sites represent sites of cohesin loading or pausing and are preferentially occupied by the more dynamic cohesin-STAG2. PDS5 proteins redundantly contribute to arrest cohesin at CTCF sites, possibly by preventing binding of NIPBL, but are not essential for this arrest. These results add important insights towards understanding how cohesin regulates genome folding and the specific contributions of the different variants that coexist in the cell.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Ratones , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Genoma , Proteínas Portadoras/metabolismo , Mamíferos/genética , Cohesinas
6.
Cell Rep ; 32(6): 108014, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783938

RESUMEN

Cohesin mediates sister chromatid cohesion and 3D genome folding. Two versions of the complex carrying STAG1 or STAG2 coexist in somatic vertebrate cells. STAG2 is commonly mutated in cancer, and germline mutations have been identified in cohesinopathy patients. To better understand the underlying pathogenic mechanisms, we report the consequences of Stag2 ablation in mice. STAG2 is largely dispensable in adults, and its tissue-wide inactivation does not lead to tumors but reduces fitness and affects both hematopoiesis and intestinal homeostasis. STAG2 is also dispensable for murine embryonic fibroblasts in vitro. In contrast, Stag2-null embryos die by mid-gestation and show global developmental delay and defective heart morphogenesis, most prominently in structures derived from secondary heart field progenitors. Both decreased proliferation and altered transcription of tissue-specific genes contribute to these defects. Our results provide compelling evidence on cell- and tissue-specific roles of different cohesin complexes and how their dysfunction contributes to disease.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Desarrollo Embrionario/fisiología , Animales , Homeostasis , Ratones , Ratones Noqueados , Cohesinas
7.
Cell Rep ; 27(12): 3500-3510.e4, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216471

RESUMEN

Cohesin exists in two variants carrying either STAG/SA1 or SA2. Here we have addressed their specific contributions to the unique spatial organization of the mouse embryonic stem cell genome, which ensures super-enhancer-dependent transcription of pluripotency factors and repression of lineage-specification genes within Polycomb domains. We find that cohesin-SA2 facilitates Polycomb domain compaction through Polycomb repressing complex 1 (PRC1) recruitment and promotes the establishment of long-range interaction networks between distant Polycomb-bound promoters that are important for gene repression. Cohesin-SA1, in contrast, disrupts these networks, while preserving topologically associating domain (TAD) borders. The diverse effects of both complexes on genome topology may reflect two modes of action of cohesin. One, likely involving loop extrusion, establishes overall genome arrangement in TADs together with CTCF and prevents excessive segregation of same-class compartment regions. The other is required for organization of local transcriptional hubs such as Polycomb domains and super-enhancers, which define cell identity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Elementos de Facilitación Genéticos , Masculino , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas del Grupo Polycomb/genética , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas , Cohesinas
8.
Nat Struct Mol Biol ; 25(6): 496-504, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29867216

RESUMEN

Two variant cohesin complexes containing SMC1, SMC3, RAD21 and either SA1 (also known as STAG1) or SA2 (also known as STAG2) are present in all cell types. We report here their genomic distribution and specific contributions to genome organization in human cells. Although both variants are found at CCCTC-binding factor (CTCF) sites, a distinct population of the SA2-containing cohesin complexes (hereafter referred to as cohesin-SA2) localize to enhancers lacking CTCF, are linked to tissue-specific transcription and cannot be replaced by the SA1-containing cohesin complex (cohesin-SA1) when SA2 is absent, a condition that has been observed in several tumors. Downregulation of each of these variants has different consequences for gene expression and genome architecture. Our results suggest that cohesin-SA1 preferentially contributes to the stabilization of topologically associating domain boundaries together with CTCF, whereas cohesin-SA2 promotes cell-type-specific contacts between enhancers and promoters independently of CTCF. Loss of cohesin-SA2 rewires local chromatin contacts and alters gene expression. These findings provide insights into how cohesin mediates chromosome folding and establish a novel framework to address the consequences of mutations in cohesin genes in cancer.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Cromosomas Humanos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación hacia Abajo/fisiología , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica/fisiología , Humanos , Unión Proteica , Transcripción Genética , Cohesinas
9.
Nucleus ; 6(2): 133-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25569378

RESUMEN

The centromere is the chromosomal region in which the kinetochore is assembled to orchestrate chromosome segregation. It is defined by the presence of a histone H3 variant called Centromere Protein A (CENP-A) or CenH3. Propagation of centromere identity entails deposition of new CENP-A upon exit from mitosis in vertebrate cells. A group of 16 proteins that co-immunoprecipitate with CENP-A, the Constitutive Centromere Associated Network or CCAN, contribute to kinetochore assembly and function. For most of them it is still unclear how and when they are recruited to centromeres and whether they have a role in CENP-A deposition. Taking advantage of the Xenopus egg cell-free system, we have addressed these issues for CCAN proteins CENP-C, CENP-T and CENP-W. CENP-C recruitment occurs as soon as sperm DNA, containing CENP-A, is added to the egg extract, and continues after de novo incorporation of CENP-A in early interphase. In contrast, centromeric recruitment of CENP-T occurs in late interphase and precedes that of CENP-W, which occurs in mitosis. Unlike CENP-C, CENP-T and CENP-W do not participate in CENP-A deposition. However, like CENP-C, they play a major role in kinetochore assembly. Depletion of CENP-C results in reduced amount of CENP-T at centromeres, an effect more prominent in mitosis than in interphase. In spite of this, kinetochores can still be assembled under this condition although the recruitment of Ndc80 and Mis12 is decreased. Our results support the existence of 2 pathways for kinetochore assembly directed by CENP-C and CENP-T/W, which can be reconstituted in Xenopus egg extracts.


Asunto(s)
Extractos Celulares/química , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Óvulo/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animales , Autoantígenos/metabolismo , Proteína A Centromérica , Cromatina , Replicación del ADN , Interfase , Cinetocoros/metabolismo , Mitosis , Modelos Biológicos
10.
J Cell Biol ; 192(4): 569-82, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21321101

RESUMEN

Centromeric protein A (CENP-A) is the epigenetic mark of centromeres. CENP-A replenishment is necessary in each cell cycle to compensate for the dilution associated to DNA replication, but how this is achieved mechanistically is largely unknown. We have developed an assay using Xenopus egg extracts that can recapitulate the spatial and temporal specificity of CENP-A deposition observed in human cells, providing us with a robust in vitro system amenable to molecular dissection. Here we show that this deposition depends on Xenopus Holliday junction-recognizing protein (xHJURP), a member of the HJURP/Scm3 family recently identified in yeast and human cells, further supporting the essential role of these chaperones in CENP-A loading. Despite little sequence homology, human HJURP can substitute for xHJURP. We also report that condensin II, but not condensin I, is required for CENP-A assembly and contributes to retention of centromeric CENP-A nucleosomes both in mitosis and interphase. We propose that the chromatin structure imposed by condensin II at centromeres enables CENP-A incorporation initiated by xHJURP.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Autoantígenos/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/fisiología , Proteínas de Xenopus/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Centrómero/metabolismo , Centrómero/ultraestructura , Proteína A Centromérica , Cromatina/metabolismo , Cromatina/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/fisiología , Humanos , Interfase , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
11.
PLoS One ; 4(4): e5118, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19352502

RESUMEN

Sister chromatid cohesion mediated by cohesin is essential for accurate chromosome segregation. Classical studies suggest that heterochromatin promotes cohesion, but whether this happens through regulation of cohesin remains to be determined. Heterochromatin protein 1 (HP1) is a major component of heterochromatin. In fission yeast, the HP1 homologue Swi6 interacts with cohesin and is required for proper targeting and/or stabilization of cohesin at the centromeric region. To test whether this pathway is conserved in human cells, we have examined the behavior of cohesin in cells in which the levels of HP1 alpha, beta or gamma (the three HP1 proteins present in mammalian organisms) have been reduced by siRNA. We have also studied the consequences of treating human cells with drugs that change the histone modification profile of heterochromatin and thereby affect HP1 localization. Our results show no evidence for a requirement of HP1 proteins for either loading of bulk cohesin onto chromatin in interphase or retention of cohesin at pericentric heterochromatin in mitosis. However, depletion of HP1gamma leads to defects in mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Inmunoprecipitación , Unión Proteica , ARN Interferente Pequeño , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA