Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-30224530

RESUMEN

Mutations in the kelch propeller domain (K13 propeller) of Plasmodium falciparum parasites from Southeast Asia are associated with reduced susceptibility to artemisinin. We exposed in vitro-cultured stage V gametocytes from Cambodian K13 propeller mutant parasites to dihydroartemisinin and evaluated the inhibition of male gamete formation in an in vitro exflagellation inhibition assay (EIA). Gametocytes with the R539T and C580Y K13 propeller alleles were less susceptible to dihydroartemisinin and had significantly higher 50% inhibitory concentrations (IC50s) than did gametocytes with wild-type alleles.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Cambodia , Flagelos/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/parasitología , Mutación , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/genética
2.
J Antimicrob Chemother ; 73(5): 1279-1290, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29420756

RESUMEN

Objectives: Novel chemical tools to eliminate malaria should ideally target both the asexual parasites and transmissible gametocytes. Several imidazopyridazines (IMPs) and 2-aminopyridines (2-APs) have been described as potent antimalarial candidates targeting lipid kinases. However, these have not been extensively explored for stage-specific inhibition of gametocytes in Plasmodium falciparum parasites. Here we provide an in-depth evaluation of the gametocytocidal activity of compounds from these chemotypes and identify novel starting points for dual-acting antimalarials. Methods: We evaluated compounds against P. falciparum gametocytes using several assay platforms for cross-validation and stringently identified hits that were further profiled for stage specificity, speed of action and ex vivo efficacy. Physicochemical feature extraction and chemogenomic fingerprinting were applied to explore the kinase inhibition susceptibility profile. Results: We identified 34 compounds with submicromolar activity against late stage gametocytes, validated across several assay platforms. Of these, 12 were potent at <100 nM (8 were IMPs and 4 were 2-APs) and were also active against early stage gametocytes and asexual parasites, with >1000-fold selectivity towards the parasite over mammalian cells. Front-runner compounds targeted mature gametocytes within 48 h and blocked transmission to mosquitoes. The resultant chemogenomic fingerprint of parasites treated with the lead compounds revealed the importance of targeting kinases in asexual parasites and gametocytes. Conclusions: This study encompasses an in-depth evaluation of the kinase inhibitor space for gametocytocidal activity. Potent lead compounds have enticing dual activities and highlight the importance of targeting the kinase superfamily in malaria elimination strategies.


Asunto(s)
Aminopiridinas/farmacología , Antimaláricos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/química , Aminopiridinas/aislamiento & purificación , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/aislamiento & purificación
3.
Proc Natl Acad Sci U S A ; 109(28): E1957-62, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22623529

RESUMEN

Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1), leucine-rich repeat protein 1, and Anopheles Plasmodium-responsive leucine-rich repeat protein 1] prevented melanization of 7G8 parasites, reverting the refractory phenotype. In contrast, it had no effect on the intensity of infection with NF54, suggesting that this line is able to evade TEP1-mediated lysis. When R females were coinfected with a line that is melanized (7G8) and a line that survives (3D7), the coinfection resulted in mixed infections with both live and encapsulated parasites on individual midguts. This finding shows that survival of individual parasites is parasite-specific and not systemic in nature, because parasites can evade TEP1-mediated lysis even when other parasites are melanized in the same midgut. When females from an extensive genetic cross between R and susceptible A. gambiae (G3) mosquitoes were infected with P. berghei, encapsulation was strongly correlated with the TEP1-R1 allele. However, P. falciparum 7G8 parasites were no longer encapsulated by females from this cross, indicating that the TEP1-R1 allele is not sufficient to melanize this line. Evasion of the A. gambiae immune system by P. falciparum may be the result of parasite adaptation to sympatric mosquito vectors and may be an important factor driving malaria transmission.


Asunto(s)
Anopheles/metabolismo , Anopheles/parasitología , Proteínas del Sistema Complemento/metabolismo , Proteínas de Insectos/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Alelos , Animales , Cruzamientos Genéticos , Femenino , Humanos , Sistema Inmunológico , Malaria/parasitología , Malaria/transmisión , ARN Bicatenario/genética , Especificidad de la Especie
4.
BMC Genomics ; 15: 636, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25073905

RESUMEN

BACKGROUND: Genome sequencing of Anopheles gambiae was completed more than ten years ago and has accelerated research on malaria transmission. However, annotation needs to be refined and verified experimentally, as most predicted transcripts have been identified by comparative analysis with genomes from other species. The mosquito midgut-the first organ to interact with Plasmodium parasites-mounts effective antiplasmodial responses that limit parasite survival and disease transmission. High-throughput Illumina sequencing of the midgut transcriptome was used to identify new genes and transcripts, contributing to the refinement of An. gambiae genome annotation. RESULTS: We sequenced ~223 million reads from An. gambiae midgut cDNA libraries generated from susceptible (G3) and refractory (L35) mosquito strains. Mosquitoes were infected with either Plasmodium berghei or Plasmodium falciparum, and midguts were collected after the first or second Plasmodium infection. In total, 22,889 unique midgut transcript models were generated from both An. gambiae strain sequences combined, and 76% are potentially novel. Of these novel transcripts, 49.5% aligned with annotated genes and appear to be isoforms or pre-mRNAs of reference transcripts, while 50.5% mapped to regions between annotated genes and represent novel intergenic transcripts (NITs). Predicted models were validated for midgut expression using qRT-PCR and microarray analysis, and novel isoforms were confirmed by sequencing predicted intron-exon boundaries. Coding potential analysis revealed that 43% of total midgut transcripts appear to be long non-coding RNA (lncRNA), and functional annotation of NITs showed that 68% had no homology to current databases from other species. Reads were also analyzed using de novo assembly and predicted transcripts compared with genome mapping-based models. Finally, variant analysis of G3 and L35 midgut transcripts detected 160,742 variants with respect to the An. gambiae PEST genome, and 74% were new variants. Intergenic transcripts had a higher frequency of variation compared with non-intergenic transcripts. CONCLUSION: This in-depth Illumina sequencing and assembly of the An. gambiae midgut transcriptome doubled the number of known transcripts and tripled the number of variants known in this mosquito species. It also revealed existence of a large number of lncRNA and opens new possibilities for investigating the biological function of many newly discovered transcripts.


Asunto(s)
Anopheles/genética , Mucosa Intestinal/metabolismo , Anotación de Secuencia Molecular/métodos , Transcriptoma , Animales , Anopheles/embriología , Anopheles/parasitología , Variación Genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Plasmodium berghei/fisiología , Plasmodium falciparum/fisiología , ARN Mensajero/genética , Análisis de Secuencia de ARN
5.
Science ; 381(6657): 533-540, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535741

RESUMEN

Malaria control demands the development of a wide range of complementary strategies. We describe the properties of a naturally occurring, non-genetically modified symbiotic bacterium, Delftia tsuruhatensis TC1, which was isolated from mosquitoes incapable of sustaining the development of Plasmodium falciparum parasites. D. tsuruhatensis TC1 inhibits early stages of Plasmodium development and subsequent transmission by the Anopheles mosquito through secretion of a small-molecule inhibitor. We have identified this inhibitor to be the hydrophobic molecule harmane. We also found that, on mosquito contact, harmane penetrates the cuticle, inhibiting Plasmodium development. D. tsuruhatensis TC1 stably populates the mosquito gut, does not impose a fitness cost on the mosquito, and inhibits Plasmodium development for the mosquito's life. Contained field studies in Burkina Faso and modeling showed that D. tsuruhatensis TC1 has the potential to complement mosquito-targeted malaria transmission control.


Asunto(s)
Anopheles , Delftia , Interacciones Huésped-Parásitos , Malaria Falciparum , Plasmodium falciparum , Animales , Anopheles/microbiología , Malaria Falciparum/microbiología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Plasmodium falciparum/microbiología , Plasmodium falciparum/fisiología , Delftia/fisiología , Simbiosis , Humanos
6.
J Med Chem ; 64(9): 6059-6069, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33909975

RESUMEN

Shiga toxin is an AB5 toxin produced by Shigella species, while related toxins are produced by Shiga toxin-producing Escherichia coli (STEC). Infection by Shigella can lead to bloody diarrhea followed by the often fatal hemolytic uremic syndrome (HUS). In the present paper, we aimed for a simple and effective toxin inhibitor by comparing three classes of carbohydrate-based inhibitors: glycodendrimers, glycopolymers, and oligosaccharides. We observed a clear enhancement in potency for multivalent inhibitors, with the divalent and tetravalent compounds inhibiting in the millimolar and micromolar range, respectively. However, the polymeric inhibitor based on galabiose was the most potent in the series exhibiting nanomolar inhibition. Alginate and chitosan oligosaccharides also inhibit Shiga toxin and may be used as a prophylactic drug during shigella outbreaks.


Asunto(s)
Carbohidratos/química , Carbohidratos/farmacología , Descubrimiento de Drogas , Toxina Shiga/antagonistas & inhibidores
7.
J Med Entomol ; 47(6): 1220-6, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21175075

RESUMEN

Anopheles culicifacies is the main vector for transmission of Plasmodium vivax malaria in the Indian subcontinent. A strain of An. culicifacies isolated from its natural niche displayed complete refractoriness to P. vivax by melanotic encapsulation of ookinetes. Prophenoloxidases are key components of the phenoloxidase cascade that leads to recognition and melanization of invading organisms. We isolated and cloned prophenoloxidase-encoding acppo6 gene of An. culicifacies and analyzed its expression profile under various regimens of immune challenge. The acppo6 was differentially expressed during various stages of larval development. The acppo6 transcription was also up-regulated in response to bacteria and Plasmodium vinckei petteri challenge. The transcript levels of the acppo6 gene were higher in naive adult refractory female mosquitoes as compared with female susceptible mosquitoes. Furthermore, the induction of acppo6 in the susceptible strain upon Plasmodium infection was negligible as compared with that of the refractory strain. The observation is suggestive of the role of acppo6 in effectuating a melanotic response in Plasmodium-incompetent naturally occurring refractory An. culicifacies strain.


Asunto(s)
Anopheles/enzimología , Anopheles/genética , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Perfilación de la Expresión Génica , Plasmodium vivax/fisiología , Secuencia de Aminoácidos , Animales , Anopheles/parasitología , Femenino , Regulación Enzimológica de la Expresión Génica , Interacciones Huésped-Parásitos/genética , Datos de Secuencia Molecular
8.
BMC Microbiol ; 9: 154, 2009 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-19643026

RESUMEN

BACKGROUND: Functional screens based on dsRNA-mediated gene silencing identified several Anopheles gambiae genes that limit Plasmodium berghei infection. However, some of the genes identified in these screens have no effect on the human malaria parasite Plasmodium falciparum; raising the question of whether different mosquito effector genes mediate anti-parasitic responses to different Plasmodium species. RESULTS: Four new An. gambiae (G3) genes were identified that, when silenced, have a different effect on P. berghei (Anka 2.34) and P. falciparum (3D7) infections. Orthologs of these genes, as well as LRIM1 and CTL4, were also silenced in An. stephensi (Nijmegen Sda500) females infected with P. yoelii (17XNL). For five of the six genes tested, silencing had the same effect on infection in the P. falciparum-An. gambiae and P. yoelii-An. stephensi parasite-vector combinations. Although silencing LRIM1 or CTL4 has no effect in An. stephensi females infected with P. yoelii, when An. gambiae is infected with the same parasite, silencing these genes has a dramatic effect. In An. gambiae (G3), TEP1, LRIM1 or LRIM2 silencing reverts lysis and melanization of P. yoelii, while CTL4 silencing enhances melanization. CONCLUSION: There is a broad spectrum of compatibility, the extent to which the mosquito immune system limits infection, between different Plasmodium strains and particular mosquito strains that is mediated by TEP1/LRIM1 activation. The interactions between highly compatible animal models of malaria, such as P. yoelii (17XNL)-An. stephensi (Nijmegen Sda500), is more similar to that of P. falciparum (3D7)-An. gambiae (G3).


Asunto(s)
Anopheles/inmunología , Interacciones Huésped-Parásitos/inmunología , Plasmodium berghei/fisiología , Plasmodium falciparum/fisiología , Plasmodium yoelii/fisiología , Animales , Anopheles/genética , Anopheles/parasitología , Femenino , Silenciador del Gen , Genes de Insecto , Glutatión Transferasa/genética , Insectos Vectores/genética , Insectos Vectores/inmunología , Insectos Vectores/parasitología , Ratones , Ratones Endogámicos BALB C , Plasmodium berghei/inmunología , Plasmodium falciparum/inmunología , Plasmodium yoelii/inmunología , Especificidad de la Especie
9.
Sci Rep ; 8(1): 7764, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773818

RESUMEN

Plasmodium falciparum Standard Membrane Feeding Assay (PfSMFA) is the current gold standard mosquito based confirmatory transmission blocking (TrB) assay for human malaria. However, owing to its complexity only selected gametocytocidal molecules are progressed into SMFA. Predictive tools for evaluation of TrB behavior of compounds in SMFA would be extremely beneficial, but lack of substantially large data sets from many mosquito feeds preempts the ability to perform correlations between outcomes from in vitro assays and SMFA. Here, a total of 44 different anti-malarial compounds were screened for inhibitory effect on male gamete formation in exflagellation inhibition assay (EIA) and the same drug-treated parasites were fed to mosquitoes in SMFA. Regression analysis was performed between outcomes of the two assays and regression models were applied to a randomly selected validation set of four compounds indicating no overfitting and good predictive power. In addition, the pIC50 for 11 different compounds obtained in the EIA was also correlated with pIC50's in SMFA. Resulting regression models provided pIC50 predictions in SMFA with reasonably good accuracy thereby demonstrating the use of a simple in vitro assay to predict TrB of molecules in a complex mosquito based assay.


Asunto(s)
Anopheles/fisiología , Antimaláricos/farmacología , Control de Enfermedades Transmisibles/métodos , Células Germinativas/efectos de los fármacos , Malaria Falciparum/prevención & control , Oocistos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Bioensayo , Conducta Alimentaria , Femenino , Células Germinativas/parasitología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Masculino , Oocistos/crecimiento & desarrollo , Plasmodium falciparum/fisiología
10.
BMC Mol Biol ; 8: 33, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17502004

RESUMEN

BACKGROUND: The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax; RESULTS: Here, we report the molecular characterization of a serine protease (acsp30)-encoding gene from A. culicifacies, which was expressed in high abundance in the refractory strain compared to the susceptible (S) strain. The transcriptional upregulation of acsp30 upon Plasmodium challenge in the refractory strain coincided with ookinete invasion of mosquito midgut. Gene organization and primary sequence of acsp30 were identical in the R and S strains suggesting a divergent regulatory status of acsp30 in these strains. To examine this further, the upstream regulatory sequences of acsp30 were isolated, cloned and evaluated for the presence of promoter activity. The 702 bp upstream region of acsp30 from the two strains revealed sequence divergence. The promoter activity measured by luciferase-based reporter assay was shown to be 1.5-fold higher in the R strain than in the S. Gel shift experiments demonstrated a differential recruitment of nuclear proteins to upstream sequences of acsp30 as well as a difference in the composition of nuclear proteins in the two strains, both of which might contribute to the relative abundance of acsp30 in the R strain; CONCLUSION: The specific upregulation of acsp30 in the R strain only in response to Plasmodium infection is suggestive of its role in contributing the refractory phenotype to the A. culicifacies mosquito population.


Asunto(s)
Anopheles/genética , Anopheles/inmunología , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Malaria/parasitología , Serina Endopeptidasas/genética , Secuencia de Aminoácidos , Animales , Anopheles/metabolismo , Secuencia de Bases , Clonación Molecular , Genes de Insecto , Predisposición Genética a la Enfermedad , India , Datos de Secuencia Molecular , Filogenia , Plasmodium malariae/inmunología , Regiones Promotoras Genéticas , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo
11.
Nat Commun ; 8: 15160, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513586

RESUMEN

Plasmodium falciparum stage V gametocytes are responsible for parasite transmission, and drugs targeting this stage are needed to support malaria elimination. We here screen the Tres Cantos Antimalarial Set (TCAMS) using the previously developed P. falciparum female gametocyte activation assay (Pf FGAA), which assesses stage V female gametocyte viability and functionality using Pfs25 expression. We identify over 400 compounds with activities <2 µM, chemically classified into 57 clusters and 33 singletons. Up to 68% of the hits are chemotypes described for the first time as late-stage gametocyte-targeting molecules. In addition, the biological profile of 90 compounds representing the chemical diversity is assessed. We confirm in vitro transmission-blocking activity of four of the six selected molecules belonging to three distinct scaffold clusters. Overall, this TCAMS gametocyte screen provides 276 promising antimalarial molecules with dual asexual/sexual activity, representing starting points for target identification and candidate selection.


Asunto(s)
Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos , Células Germinativas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Flagelos/metabolismo , Células Hep G2 , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Reproducibilidad de los Resultados
12.
Nat Commun ; 8: 15159, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537265

RESUMEN

K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro, is efficacious against P. falciparum in in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Tetraoxanos/química , Tetraoxanos/farmacología , Animales , Antimaláricos/química , Perros , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos/genética , Eritrocitos/parasitología , Femenino , Semivida , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Plasmodium falciparum/genética , Plasmodium vivax/genética , Ratas , Ratas Sprague-Dawley , Tetraoxanos/farmacocinética , Transgenes
13.
PLoS One ; 10(8): e0135139, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317851

RESUMEN

The discovery of new antimalarials with transmission blocking activity remains a key issue in efforts to control malaria and eventually eradicate the disease. Recently, high-throughput screening (HTS) assays have been successfully applied to Plasmodium falciparum asexual stages to screen millions of compounds, with the identification of thousands of new active molecules, some of which are already in clinical phases. The same approach has now been applied to identify compounds that are active against P. falciparum gametocytes, the parasite stage responsible for transmission. This study reports screening results for the Tres Cantos Antimalarial Set (TCAMS), of approximately 13,533 molecules, against P. falciparum stage V gametocytes. Secondary confirmation and cytotoxicity assays led to the identification of 98 selective molecules with dual activity against gametocytes and asexual stages. Hit compounds were chemically clustered and analyzed for appropriate physicochemical properties. The TCAMS chemical space around the prioritized hits was also studied. A selection of hit compounds was assessed ex vivo in the standard membrane feeding assay and demonstrated complete block in transmission. As a result of this effort, new chemical structures not connected to previously described antimalarials have been identified. This new set of compounds may serve as starting points for future drug discovery programs as well as tool compounds for identifying new modes of action involved in malaria transmission.


Asunto(s)
Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/transmisión , Plasmodium falciparum/efectos de los fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Mediciones Luminiscentes/métodos , Pruebas de Sensibilidad Parasitaria , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas
14.
J Innate Immun ; 6(2): 119-28, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23886925

RESUMEN

Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector/effectors regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible G3 and the refractory L3-5 Anopheles gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of susceptible mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei,P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd,STAT or JNK signaling cascades were not essential for the production of the hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses.


Asunto(s)
Anopheles/inmunología , Hemocitos/inmunología , Inmunidad Innata/inmunología , Plasmodium berghei/inmunología , Animales , Anopheles/genética , Anopheles/parasitología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Femenino , Hemocitos/metabolismo , Interacciones Huésped-Parásitos/inmunología , Inmunidad Innata/genética , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Insectos Vectores/genética , Insectos Vectores/inmunología , Insectos Vectores/parasitología , Malaria/inmunología , Malaria/parasitología , Ratones Endogámicos BALB C , Modelos Inmunológicos , Plasmodium berghei/genética , Plasmodium berghei/fisiología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Interferencia de ARN , Transducción de Señal/genética , Transducción de Señal/inmunología , Especificidad de la Especie
15.
Sci Rep ; 3: 2292, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23887392

RESUMEN

Expression of chitinase is developmentally regulated in insects in consonance with their molting process. During the larval-larval metamorphosis in Helicoverpa armigera, chitinase gene expression varies from high to negligible. In the five-day metamorphic course of fifth-instar larvae, chitinase transcript is least abundant on third day and maximal on fifth day. MicroRNA library prepared from these highest and lowest chitinase-expressing larval stages resulted in isolation of several miRNAs. In silico analysis of sequenced miRNAs revealed three miRNAs having sequence similarity to 3'UTR of chitinase. Gene-targeted specific action of these miRNAs, was investigated by luciferase reporter having 3'UTR of chitinase. Only one of three miRNAs, miR-24, inhibited luciferase expression. Further, a day-wise in vivo quantification of miR-24 in fifth-instar larvae revealed a negative correlation with corresponding chitinase transcript abundance. The force-feeding of synthetic miR-24 induced significant morphological aberrations accompanied with arrest of molting. These miR-24 force-fed larvae revealed significantly reduced chitinase transcript abundance.


Asunto(s)
Quitinasas/genética , Perfilación de la Expresión Génica , Mariposas Nocturnas/genética , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Línea Celular , Quitinasas/química , Quitinasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/metabolismo , Metamorfosis Biológica/genética , MicroARNs/genética , Datos de Secuencia Molecular , Mariposas Nocturnas/enzimología , Fenotipo , Reproducibilidad de los Resultados , Factores de Tiempo , Transcripción Genética
16.
PLoS One ; 7(4): e35210, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509400

RESUMEN

BACKGROUND: Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. METHODOLOGY/PRINCIPAL FINDINGS: We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side--the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. CONCLUSION: Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells to successfully complete their life cycle in the mosquito and AgESP appears to be a major player in the regulation of this process.


Asunto(s)
Anopheles/enzimología , Epitelio/enzimología , Serina Proteasas/aislamiento & purificación , Serina Proteasas/metabolismo , Secuencia de Aminoácidos , Animales , Anopheles/parasitología , Gelsolina/metabolismo , Regulación de la Expresión Génica , Humanos , Malaria/enzimología , Malaria/parasitología , Datos de Secuencia Molecular , Plasmodium falciparum/patogenicidad , Glándulas Salivales/enzimología , Glándulas Salivales/metabolismo , Serina Proteasas/fisiología
17.
Acta Trop ; 121(3): 256-66, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22266213

RESUMEN

The study of malaria parasites on the Indian subcontinent should help us understand unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. The Malaria Evolution in South Asia (MESA) research program is one of ten International Centers of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. In this second of two reviews, we describe why population structures of Plasmodia in India will be characterized and how we will determine their consequences on disease presentation, outcome and patterns. Specific projects will determine if genetic diversity, possibly driven by parasites with higher genetic plasticity, plays a role in changing epidemiology, pathogenesis, vector competence of parasite populations and whether innate human genetic traits protect Indians from malaria today. Deep local clinical knowledge of malaria in India will be supplemented by basic scientists who bring new research tools. Such tools will include whole genome sequencing and analysis methods; in vitro assays to measure genome plasticity, RBC cytoadhesion, invasion, and deformability; mosquito infectivity assays to evaluate changing parasite-vector compatibilities; and host genetics to understand protective traits in Indian populations. The MESA-ICEMR study sites span diagonally across India and include a mixture of very urban and rural hospitals, each with very different disease patterns and patient populations. Research partnerships include government-associated research institutes, private medical schools, city and state government hospitals, and hospitals with industry ties. Between 2012 and 2017, in addition to developing clinical research and basic science infrastructure at new clinical sites, our training workshops will engage new scientists and clinicians throughout South Asia in the malaria research field.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Insectos Vectores/parasitología , Malaria/prevención & control , Plasmodium/genética , Animales , Culicidae/parasitología , Variación Genética , Conocimientos, Actitudes y Práctica en Salud , Interacciones Huésped-Parásitos , Humanos , India , Insectos Vectores/fisiología , Cooperación Internacional , Malaria/epidemiología , Control de Mosquitos/métodos , Programas Nacionales de Salud/organización & administración , Plasmodium/patogenicidad , Investigación/educación , Investigación/organización & administración , Índice de Severidad de la Enfermedad
18.
Science ; 327(5973): 1644-8, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20223948

RESUMEN

Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses.


Asunto(s)
Anopheles/enzimología , Anopheles/inmunología , NADPH Oxidasas/metabolismo , Peroxidasa/metabolismo , Animales , Anopheles/microbiología , Anopheles/parasitología , Antibacterianos/farmacología , Bacterias/inmunología , Fenómenos Fisiológicos Bacterianos , Sangre , Sistema Digestivo/enzimología , Sistema Digestivo/inmunología , Sistema Digestivo/microbiología , Sistema Digestivo/parasitología , Inducción Enzimática , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/parasitología , Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica , Proteínas de Insectos/metabolismo , Modelos Biológicos , NADPH Oxidasas/genética , Óxido Nítrico Sintasa/biosíntesis , Permeabilidad , Peroxidasa/genética , Plasmodium berghei/inmunología , Plasmodium berghei/fisiología , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Interferencia de ARN , Tirosina/análogos & derivados , Tirosina/metabolismo
19.
Science ; 329(5997): 1353-5, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20829487

RESUMEN

Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes that circulates in the insect's hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory.


Asunto(s)
Anopheles/inmunología , Anopheles/parasitología , Bacterias/inmunología , Hemocitos/fisiología , Inmunidad Innata , Memoria Inmunológica , Plasmodium berghei/inmunología , Animales , Anopheles/microbiología , Fenómenos Fisiológicos Bacterianos , Recuento de Células Sanguíneas , Diferenciación Celular , Recuento de Colonia Microbiana , Sistema Digestivo/microbiología , Sistema Digestivo/parasitología , Células Epiteliales/microbiología , Femenino , Granulocitos/citología , Granulocitos/fisiología , Hematopoyesis , Hemocitos/citología , Interacciones Huésped-Parásitos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos Vectores/inmunología , Insectos Vectores/microbiología , Insectos Vectores/parasitología , Malaria/parasitología , Ratones , Plasmodium berghei/fisiología
20.
Cell Host Microbe ; 5(5): 498-507, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19454353

RESUMEN

The STAT family of transcription factors activates expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not essential for mosquitoes to survive a bacterial challenge. AgSTAT-A silencing reduces the number of early Plasmodium oocysts in the midgut, but nevertheless enhances the overall infection by increasing oocyst survival. Silencing of SOCS, a STAT suppressor, has the opposite effect, reducing Plasmodium infection by increasing NOS expression. Chemical inhibition of mosquito NOS activity after oocyte formation increases oocyte survival. Thus, the AgSTAT-A pathway mediates a late-phase antiplasmodial response that reduces oocyst survival in A. gambiae.


Asunto(s)
Anopheles/inmunología , Anopheles/parasitología , Proteínas de Insectos/inmunología , Plasmodium/crecimiento & desarrollo , Factores de Transcripción STAT/inmunología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Anopheles/clasificación , Anopheles/genética , Secuencia de Bases , Línea Celular , Femenino , Interacciones Huésped-Parásitos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Malaria/inmunología , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Oocistos/crecimiento & desarrollo , Oocistos/fisiología , Filogenia , Plasmodium/fisiología , Factores de Transcripción STAT/química , Factores de Transcripción STAT/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA