Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7855): 571-576, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790468

RESUMEN

Biological invasions are responsible for substantial biodiversity declines as well as high economic losses to society and monetary expenditures associated with the management of these invasions1,2. The InvaCost database has enabled the generation of a reliable, comprehensive, standardized and easily updatable synthesis of the monetary costs of biological invasions worldwide3. Here we found that the total reported costs of invasions reached a minimum of US$1.288 trillion (2017 US dollars) over the past few decades (1970-2017), with an annual mean cost of US$26.8 billion. Moreover, we estimate that the annual mean cost could reach US$162.7 billion in 2017. These costs remain strongly underestimated and do not show any sign of slowing down, exhibiting a consistent threefold increase per decade. We show that the documented costs are widely distributed and have strong gaps at regional and taxonomic scales, with damage costs being an order of magnitude higher than management expenditures. Research approaches that document the costs of biological invasions need to be further improved. Nonetheless, our findings call for the implementation of consistent management actions and international policy agreements that aim to reduce the burden of invasive alien species.


Asunto(s)
Biodiversidad , Ecología/economía , Ciencia Ambiental/economía , Internacionalidad , Especies Introducidas/economía , Especies Introducidas/tendencias , Animales , Mapeo Geográfico , Invertebrados , Modelos Lineales , Plantas , Vertebrados
2.
Med Vet Entomol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989855

RESUMEN

Mosquito traps, historically used for surveillance and research, have gained prominence as a tool for mosquito control, amidst concern over the environmental impact and increased resistance to insecticide-based methods. In this study, we tested the effectiveness of a mass trapping barrier design with two types of traps, Mosquito Magnet (MM) traps and BG-Protector (BGP) traps. This experiment was conducted in three coastal camping areas in southern France between summer and autumn 2022, where the presence of floodwater mosquito species with anthropophilic preferences like Aedes caspius represents a year-long nuisance. MM traps were set around the campsite as a barrier to interfere with mosquitoes from entering the campsites, whereas BGP traps were set within the campsites, with the aim of diverting mosquitoes away from humans at peak activity hours. Over 210,000 mosquitoes of 11 species from 4 genera were collected by both trap types across treatment campsites, with no significant differences in mosquito community samplings between BGP and MM traps. Barrier traps effectively targeted Ae. caspius, reducing total mosquito abundance in two of the three study sites by 34% and 55%. This study provides valuable insights into the efficacy and feasibility of using mass trapping barriers as a complementary control strategy for mosquito species in wetlands.

3.
PLoS Pathog ; 17(6): e1009637, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34161394

RESUMEN

The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens-three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)-and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.


Asunto(s)
Biodiversidad , Enfermedades de las Aves/epidemiología , Infecciones Protozoarias en Animales/epidemiología , Gorriones/microbiología , Fiebre del Nilo Occidental/veterinaria , Animales , Haemosporida , Prevalencia , España , Fiebre del Nilo Occidental/epidemiología
5.
Ecol Lett ; 23(11): 1557-1560, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32869489

RESUMEN

Concerns about the prospect of a global pandemic have been triggered many times during the last two decades. These have been realised through the current COVID-19 pandemic, due to a new coronavirus SARS-CoV2, which has impacted almost every country on Earth. Here, we show how considering the pandemic through the lenses of the evolutionary ecology of pathogens can help better understand the root causes and devise solutions to prevent the emergence of future pandemics. We call for better integration of these approaches into transdisciplinary research and invite scientists working on the evolutionary ecology of pathogens to contribute to a more "solution-oriented" agenda with practical applications, emulating similar movements in the field of economics in recent decades.


Asunto(s)
Betacoronavirus , COVID-19 , Infecciones por Coronavirus , Neumonía Viral , Infecciones por Coronavirus/epidemiología , Brotes de Enfermedades/prevención & control , Ecología , Humanos , Pandemias/prevención & control , Neumonía Viral/epidemiología , SARS-CoV-2 , Soluciones
6.
J Anim Ecol ; 87(3): 727-740, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29495129

RESUMEN

Vector and host communities, as well as habitat characteristics, may have important but different impacts on the prevalence, richness and evenness of vector-borne parasites. We investigated the relative importance of (1) the mosquito community composition, (2) the vertebrate community composition and (3) landscape characteristics on the prevalence, richness and evenness of avian Plasmodium. We hypothesized that parasite prevalence will be more affected by vector-related parameters, while host parameters should be also important to explain Plasmodium richness and evenness. We sampled 2,588 wild house sparrows (Passer domesticus) and 340,829 mosquitoes, and we performed vertebrate censuses at 45 localities in the Southwest of Spain. These localities included urban, rural and natural landscapes that were characterized by several habitat variables. Twelve Plasmodium lineages were identified in house sparrows corresponding to three major clades. Variation partitioning showed that landscape characteristics explained the highest fraction of variation in all response variables (21.0%-44.8%). Plasmodium prevalence was in addition explained by vector-related variables (5.4%) and its interaction with landscape (10.2%). Parasite richness and evenness were mostly explained by vertebrate community-related variables. The structuring role of landscape characteristics in vector and host communities was a key factor in determining parasite prevalence, richness and evenness, although the role of each factor differed according to the parasite parameters studied. These results show that the biotic and abiotic contexts are important to explain the transmission dynamics of mosquito-borne pathogens in the wild.


Asunto(s)
Biodiversidad , Culicidae/parasitología , Ecosistema , Malaria Aviar/epidemiología , Plasmodium/fisiología , Gorriones , Animales , Femenino , Malaria Aviar/parasitología , Mosquitos Vectores/parasitología , Plasmodium/clasificación , Densidad de Población , España/epidemiología , Vertebrados
7.
Int J Health Geogr ; 17(1): 4, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29444675

RESUMEN

BACKGROUND: Aedes-borne diseases as dengue, zika, chikungunya and yellow fever are an emerging problem worldwide, being transmitted by Aedes aegypti and Aedes albopictus. Lack of up to date information about the distribution of Aedes species hampers surveillance and control. Global databases have been compiled but these did not capture data in the WHO Eastern Mediterranean Region (EMR), and any models built using these datasets fail to identify highly suitable areas where one or both species may occur. The first objective of this study was therefore to update the existing Ae. aegypti (Linnaeus, 1762) and Ae. albopictus (Skuse, 1895) compendia and the second objective was to generate species distribution models targeted to the EMR. A final objective was to engage the WHO points of contacts within the region to provide feedback and hence validate all model outputs. METHODS: The Ae. aegypti and Ae. albopictus compendia provided by Kraemer et al. (Sci Data 2:150035, 2015; Dryad Digit Repos, 2015) were used as starting points. These datasets were extended with more recent species and disease data. In the next step, these sets were filtered using the Köppen-Geiger classification and the Mahalanobis distance. The occurrence data were supplemented with pseudo-absence data as input to Random Forests. The resulting suitability and maximum risk of establishment maps were combined into hard-classified maps per country for expert validation. RESULTS: The EMR datasets consisted of 1995 presence locations for Ae. aegypti and 2868 presence locations for Ae. albopictus. The resulting suitability maps indicated that there exist areas with high suitability and/or maximum risk of establishment for these disease vectors in contrast with previous model output. Precipitation and host availability, expressed as population density and night-time lights, were the most important variables for Ae. aegypti. Host availability was the most important predictor in case of Ae. albopictus. Internal validation was assessed geographically. External validation showed high agreement between the predicted maps and the experts' extensive knowledge of the terrain. CONCLUSION: Maps of distribution and maximum risk of establishment were created for Ae. aegypti and Ae. albopictus for the WHO EMR. These region-specific maps highlighted data gaps and these gaps will be filled using targeted monitoring and surveillance. This will increase the awareness and preparedness of the different countries for Aedes borne diseases.


Asunto(s)
Aedes , Mapeo Geográfico , Mosquitos Vectores , Organización Mundial de la Salud , Animales , Culicidae , Dengue/diagnóstico , Dengue/epidemiología , Predicción , Humanos , Región Mediterránea/epidemiología , Especificidad de la Especie , Fiebre Amarilla/diagnóstico , Fiebre Amarilla/epidemiología
8.
Malar J ; 15(1): 589, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27931226

RESUMEN

BACKGROUND: The wide spread mosquito Culex pipiens pipiens have two forms molestus and pipiens which frequently hybridize. The two forms have behavioural and physiological differences affecting habitat requirements and host selection, which may affect the transmission dynamic of Cx. p. pipiens-borne diseases. METHODS: During 2013, blood engorged Cx. p. pipiens mosquitoes were captured in urban, rural and natural areas from Southern Spain. In 120 mosquitoes, we identified the blood meal origin at vertebrate species/genus level and the mosquito form. The presence and molecular lineage identity of avian malaria parasites in the head-thorax of each mosquito was also analysed. RESULTS: Mosquitoes of the form pipiens were more frequently found in natural than in urban areas. The proportion of Cx. pipiens form molestus and hybrids of the two forms did not differ between habitat categories. Any significant difference in the proportion of blood meals on birds between forms was found. Birds were the most common feeding source for the two forms and their hybrids. Among mammals, dogs and humans were the most common hosts. Two Plasmodium and one Haemoproteus lineages were found in mosquitoes, with non-significant differences between forms. CONCLUSION: This study supports a differential distribution of Cx. p. pipiens form pipiens between urban and natural areas. Probably due to the similar feeding sources of both mosquito forms and their hybrids here, all of them may frequently interact with avian malaria parasites playing a role in the transmission of Plasmodium.


Asunto(s)
Enfermedades de las Aves/transmisión , Culex/crecimiento & desarrollo , Culex/parasitología , Conducta Alimentaria , Malaria/veterinaria , Plasmodium/aislamiento & purificación , Animales , Ciudades , Culex/clasificación , Humanos , Malaria/transmisión , Plasmodium/clasificación , Plasmodium/genética , España
9.
J Med Entomol ; 53(2): 460-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26581402

RESUMEN

Targeted trapping of mosquito disease vectors plays an important role in the surveillance and control of mosquito-borne diseases. The Asian tiger mosquito, Aedes albopictus (Skuse), is an invasive species, which is spreading throughout the world, and is a potential vector of 24 arboviruses, particularly efficient in the transmission of chikungunya, dengue, and zika viruses. Using a 4 × 4 Latin square design, we assessed the efficacy of the new BG-Sentinel 2 mosquito trap using the attractants BG-lure and (R)-1-octen-3-ol cartridge, alone or in combination, and with and without carbon dioxide, for the field collection of Ae. albopictus mosquitoes.We found a synergistic effect of attractant and carbon dioxide that significantly increased twofold to fivefold the capture rate of Ae. albopictus. In combination with carbon dioxide, BG-lure cartridge is more effective than (R)-1-octen-3-ol in attracting females, while a combination of both attractants and carbon dioxide is the most effective for capturing males. In the absence of carbon dioxide, BG-lure cartridge alone did not increase the capture of males or females when compared with an unbaited trap. However, the synergistic effect of carbon dioxide and BG-lure makes this the most efficient combination in attracting Ae. albopictus.


Asunto(s)
Aedes , Dióxido de Carbono , Control de Mosquitos/instrumentación , Feromonas , Animales , Femenino , Francia , Masculino
10.
Euro Surveill ; 21(21)2016 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-27254729

RESUMEN

In August and September 2015, seven locally acquired cases of dengue virus type 1 (DENV-1) were detected in Nîmes, south of France, where Aedes albopictus has been established since 2011. Epidemiological and entomological investigations allowed to steer vector control measures to contain transmission. An imported case from French Polynesia with onset fever on 4 July was identified as primary case. This outbreak occurred from 8 August to 11 September in a 300 m radius area. Six sprayings to control mosquitos were performed in the affected area. We describe the first considerable dengue outbreak in mainland France where only sporadic cases of autochthonous dengue were recorded previously (2010, 2013 and 2014). The 69 day-period between the primary case and the last autochthonous case suggests multiple episodes of mosquito infections. The absence of notification of autochthonous cases during the month following the primary case's symptoms onset could be explained by the occurrence of inapparent illness. Recurrence of cases every year since 2013, the size of the 2015 outbreak and continuing expansion of areas with presence of Ae. albopictus highlight the threat of arboviral diseases in parts of Europe. Thus, European guidelines should be assessed and adjusted to the current context.


Asunto(s)
Dengue/epidemiología , Dengue/prevención & control , Brotes de Enfermedades/estadística & datos numéricos , Mosquitos Vectores , Adolescente , Adulto , Anciano , Dengue/transmisión , Femenino , Francia/epidemiología , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
11.
Sci Total Environ ; 933: 173054, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729373

RESUMEN

Invasive Aedes aegypti and Aedes albopictus mosquitoes transmit viruses such as dengue, chikungunya and Zika, posing a huge public health burden as well as having a less well understood economic impact. We present a comprehensive, global-scale synthesis of studies reporting these economic costs, spanning 166 countries and territories over 45 years. The minimum cumulative reported cost estimate expressed in 2022 US$ was 94.7 billion, although this figure reflects considerable underreporting and underestimation. The analysis suggests a 14-fold increase in costs, with an average annual expenditure of US$ 3.1 billion, and a maximum of US$ 20.3 billion in 2013. Damage and losses were an order of magnitude higher than investment in management, with only a modest portion allocated to prevention. Effective control measures are urgently needed to safeguard global health and well-being, and to reduce the economic burden on human societies. This study fills a critical gap by addressing the increasing economic costs of Aedes and Aedes-borne diseases and offers insights to inform evidence-based policy.


Asunto(s)
Aedes , Mosquitos Vectores , Animales , Dengue , Humanos , Fiebre Chikungunya/transmisión , Salud Global , Enfermedades Transmitidas por Vectores/prevención & control , Especies Introducidas , Control de Mosquitos/economía , Control de Mosquitos/métodos , Enfermedades Transmitidas por Mosquitos
12.
J Am Mosq Control Assoc ; 40(2): 109-111, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38811012

RESUMEN

Updating the mosquito fauna occurring in a specific area is crucial, given that certain species serve as vectors capable of transmitting zoonotic arboviruses. This scientific note presents the first records of mosquitoes of the tribe Orthopodomyiini in the Yucatan Peninsula. Immature mosquitoes were collected on 2 occasions inside a large tree hole in Felipe Carrillo Puerto, Quintana Roo, Mexico. Thirteen adult specimens, reared from the immatures, were obtained and identified as Orthopodomyia kummi based on external characteristics of females and males. This species has been recorded in Panama, Costa Rica, El Salvador, Guatemala, Mexico, and marginally in the United States, but its presence in the Yucatan Peninsula had gone unnoticed until now. The knowledge about mosquitoes of the genus Orthopodomyia is limited, and their epidemiological importance remains uncertain. Therefore, further studies could provide insights into the ecological and infection dynamics associated with this species.


Asunto(s)
Distribución Animal , Culicidae , Animales , México , Femenino , Masculino , Larva/crecimiento & desarrollo
13.
J Med Entomol ; 61(2): 274-308, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38159084

RESUMEN

The Yucatan Peninsula is a biogeographic province of the Neotropical region which is mostly encompassed by the 3 Mexican states of Campeche, Quintana Roo, and Yucatán. During the development of the International Joint Laboratory ELDORADO (Ecosystem, bioLogical Diversity, habitat mOdifications and Risk of emerging PAthogens and Diseases in MexicO), a French-Mexican collaboration between the IRD (Institut de Recherche pour le Développement) and UNAM (Universidad Nacional Autónoma de México) in Mérida, it became evident that many putative mosquito species names recorded in the Mexican Yucatan Peninsula were misidentifications/misinterpretations or from the uncritical repetition of incorrect literature records. To provide a stronger foundation for future studies, the mosquito fauna of the Mexican Yucatan Peninsula is here comprehensively reviewed using current knowledge of taxonomy, ecology, and distribution of species through extensive bibliographic research, and examination of newly collected specimens. As a result, 90 mosquito species classified among 16 genera and 24 subgenera are recognized to occur in the Mexican Yucatan Peninsula, including 1 new peninsula record and 3 new state records.


Asunto(s)
Culicidae , Animales , Ecosistema , México , Biodiversidad , Ecología
14.
Sci Total Environ ; 917: 170336, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38280594

RESUMEN

Urbanization is an important driver of global change associated with a set of environmental modifications that affect the introduction and distribution of invasive non-native species (species with populations transported by humans beyond their natural biogeographic range that established and are spreading in their introduced range; hereafter, invasive species). These species are recognized as a cause of large ecological and economic losses. Nevertheless, the economic impacts of these species in urban areas are still poorly understood. Here we present a synthesis of the reported economic costs of invasive species in urban areas using the global InvaCost database, and demonstrate that costs are likely underestimated. Sixty-one invasive species have been reported to cause a cumulative cost of US$ 326.7 billion in urban areas between 1965 and 2021 globally (average annual cost of US$ 5.7 billion). Class Insecta was responsible for >99 % of reported costs (US$ 324.4 billion), followed by Aves (US$ 1.4 billion), and Magnoliopsida (US$ 494 million). The reported costs were highly uneven with the sum of the five costliest species representing 80 % of reported costs. Most reported costs were a result of damage (77.3 %), principally impacting public and social welfare (77.9 %) and authorities-stakeholders (20.7 %), and were almost entirely in terrestrial environments (99.9 %). We found costs reported for 24 countries. Yet, there are 73 additional countries with no reported costs, but with occurrences of invasive species that have reported costs in other countries. Although covering a relatively small area of the Earth's surface, urban areas represent about 15 % of the total reported costs attributed to invasive species. These results highlight the conservative nature of the estimates and impacts, revealing important biases present in the evaluation and publication of reported data on costs. We emphasize the urgent need for more focused assessments of invasive species' economic impacts in urban areas.


Asunto(s)
Insectos , Especies Introducidas , Humanos , Animales , Urbanización , Ecosistema
15.
Sci Rep ; 13(1): 308, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609450

RESUMEN

The increasing trend of mosquito-borne pathogens demands more accurate global estimations of infection and transmission risks between mosquitoes. Here, we systematically review field and laboratory studies to assess the natural field infection and experimental laboratory transmission risk in Culex mosquitoes. We studied four worldwide flaviviruses: West Nile, Usutu, Japanese encephalitis, and St. Louis encephalitis, belonging to the Japanese encephalitis Serocomplex (JES). The PRISMA statement was carried out for both approaches. The Transmission-Infection Risk of the diverse mosquito species for the different viruses was estimated through seven variables. We considered 130 and 95 articles for field and experimental approach, respectively. We identified 30 species naturally infected, and 23 species capable to transmit some of the four flaviviruses. For the JES, the highest Transmission-Infection Risk estimate was recorded in Culex quinquefasciatus (North America). The maximum Infection-Transmission Risk values for West Nile was Culex restuans, for Usutu it was Culex pipiens (Europe), for St. Louis encephalitis Culex quinquefasciatus (North America), and for Japanese encephalitis Culex gelidus (Oceania). We conclude that on a worldwide scale, a combination of field and experimental data offers a better way of understanding natural infection and transmission risks between mosquito populations.


Asunto(s)
Culex , Culicidae , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Encefalitis de San Luis , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Mosquitos Vectores , Encefalitis de San Luis/epidemiología , Encefalitis Japonesa/epidemiología
16.
PLoS Negl Trop Dis ; 17(3): e0011153, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36877728

RESUMEN

BACKGROUND: Over the past decades, several viral diseases transmitted by Aedes mosquitoes-dengue, chikungunya, Zika-have spread outside of tropical areas. To limit the transmission of these viruses and preserve human health, the use of mosquito traps has been developed as a complement or alternative to other vector control techniques. The objective of this work was to perform a systematic review of the existing scientific literature to assess the efficacy of interventions based on adult mosquito trap to control Aedes population densities and the diseases they transmit worldwide. METHODS AND FINDINGS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was conducted using the PubMed and Scopus databases. Among the 19 selected papers, lethal ovitraps were used in 16 studies, host-seeking female traps in 3 studies. Furthermore, 16 studies focused on the control of Ae. aegypti. Our review showed great heterogeneity in the indicators used to assess trap efficacy: e.g., the number of host-seeking females, the number of gravid females, the proportion of positive containers, the viral infection rate in female mosquitoes or serological studies in residents. Regardless of the type of studied traps, the results of various studies support the efficacy of mass trapping in combination with classical integrated vector control in reducing Aedes density. More studies with standardized methodology, and indicators are urgently needed to provide more accurate estimates of their efficacy. CONCLUSIONS: This review highlights gaps in the demonstration of the efficacy of mass trapping of mosquitoes in reducing viral transmission and disease. Thus, further large-scale cluster randomized controlled trials conducted in endemic areas and including epidemiological outcomes are needed to establish scientific evidence for the reduction of viral transmission risk by mass trapping targeting gravid and/or host-seeking female mosquitoes.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Adulto , Animales , Femenino , Humanos , Mosquitos Vectores , Control de Mosquitos/métodos
17.
PLoS Negl Trop Dis ; 17(8): e0011501, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585443

RESUMEN

BACKGROUND: Since its first record in urban areas of Central-Africa in the 2000s, the invasive mosquito, Aedes albopictus, has spread throughout the region, including in remote villages in forested areas, causing outbreaks of Aedes-borne diseases, such as dengue and chikungunya. Such invasion might enhance Ae. albopictus interactions with wild animals in forest ecosystems and favor the spillover of zoonotic arboviruses to humans. The aim of this study was to monitor Ae. albopictus spread in the wildlife reserve of La Lopé National Park (Gabon), and evaluate the magnitude of the rainforest ecosystem colonization. METHODOLOGY: From 2014 to 2018, we used ovitraps, larval surveys, BG-Sentinel traps, and human landing catches along an anthropization gradient from La Lopé village to the natural forest in the Park. CONCLUSIONS: We detected Ae. albopictus in gallery forest up to 15 km away from La Lopé village. However, Ae. albopictus was significantly more abundant at anthropogenic sites than in less anthropized areas. The number of eggs laid by Ae. albopictus decreased progressively with the distance from the forest fringe up to 200m inside the forest. Our results suggested that in forest ecosystems, high Ae. albopictus density is mainly observed at interfaces between anthropized and natural forested environments. Additionally, our data suggested that Ae. albopictus may act as a bridge vector of zoonotic pathogens between wild and anthropogenic compartments.


Asunto(s)
Aedes , Salud Única , Animales , Humanos , Gabón , Ecosistema , Mosquitos Vectores , Bosques , Animales Salvajes
18.
ISME Commun ; 3(1): 40, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117399

RESUMEN

Mosquitoes represent the most important pathogen vectors and are responsible for the spread of a wide variety of poorly treatable diseases. Wolbachia are obligate intracellular bacteria that are widely distributed among arthropods and collectively represents one of the most promising solutions for vector control. In particular, Wolbachia has been shown to limit the transmission of pathogens, and to dramatically affect the reproductive behavior of their host through its phage WO. While much research has focused on deciphering and exploring the biocontrol applications of these WO-related phenotypes, the extent and potential impact of the Wolbachia mobilome remain poorly appreciated. Notably, several Wolbachia plasmids, carrying WO-like genes and Insertion Sequences (IS), thus possibly interrelated to other genetic units of the endosymbiont, have been recently discovered. Here we investigated the diversity and biogeography of the first described plasmid of Wolbachia in Culex pipiens (pWCP) in several islands and continental countries around the world-including Cambodia, Guadeloupe, Martinique, Thailand, and Mexico-together with mosquito strains from colonies that evolved for 2 to 30 years in the laboratory. We used PCR and qPCR to determine the presence and copy number of pWCP in individual mosquitoes, and highly accurate Sanger sequencing to evaluate potential variations. Together with earlier observation, our results show that pWCP is omnipresent and strikingly conserved among Wolbachia populations within mosquitoes from distant geographies and environmental conditions. These data suggest a critical role for the plasmid in Wolbachia ecology and evolution, and the potential of a great tool for further genetic dissection and possible manipulation of this endosymbiont.

19.
Pathogens ; 12(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38133304

RESUMEN

Arboviruses, i.e., viruses transmitted by blood-sucking arthropods, trigger significant global epidemics. Over the past 20 years, the frequency of the (re-)emergence of these pathogens, particularly those transmitted by Aedes and Culex mosquitoes, has dramatically increased. Therefore, understanding how human behavior is modulating population exposure to these viruses is of particular importance. This synthesis explores human behavioral factors driving human exposure to arboviruses, focusing on household surroundings, socio-economic status, human activities, and demographic factors. Household surroundings, such as the lack of water access, greatly influence the risk of arbovirus exposure by promoting mosquito breeding in stagnant water bodies. Socio-economic status, such as low income or low education, is correlated to an increased incidence of arboviral infections and exposure. Human activities, particularly those practiced outdoors, as well as geographical proximity to livestock rearing or crop cultivation, inadvertently provide favorable breeding environments for mosquito species, escalating the risk of virus exposure. However, the effects of demographic factors like age and gender can vary widely through space and time. While climate and environmental factors crucially impact vector development and viral replication, household surroundings, socio-economic status, human activities, and demographic factors are key drivers of arbovirus exposure. This article highlights that human behavior creates a complex interplay of factors influencing the risk of mosquito-borne virus exposure, operating at different temporal and spatial scales. To increase awareness among human populations, we must improve our understanding of these complex factors.

20.
PLoS Negl Trop Dis ; 16(3): e0010310, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35316268

RESUMEN

[This corrects the article DOI: 10.1371/journal.pntd.0006845.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA