Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angiogenesis ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727966

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.

2.
Development ; 147(12)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32439760

RESUMEN

Physical forces are important participants in the cellular dynamics that shape developing organs. During heart formation, for example, contractility and blood flow generate biomechanical cues that influence patterns of cell behavior. Here, we address the interplay between function and form during the assembly of the cardiac outflow tract (OFT), a crucial connection between the heart and vasculature that develops while circulation is under way. In zebrafish, we find that the OFT expands via accrual of both endocardial and myocardial cells. However, when cardiac function is disrupted, OFT endocardial growth ceases, accompanied by reduced proliferation and reduced addition of cells from adjacent vessels. The flow-responsive TGFß receptor Acvrl1 is required for addition of endocardial cells, but not for their proliferation, indicating distinct modes of function-dependent regulation for each of these essential cell behaviors. Together, our results indicate that cardiac function modulates OFT morphogenesis by triggering endocardial cell accumulation that induces OFT lumen expansion and shapes OFT dimensions. Moreover, these morphogenetic mechanisms provide new perspectives regarding the potential causes of cardiac birth defects.


Asunto(s)
Endocardio/metabolismo , Corazón/fisiología , Pez Cebra/metabolismo , Receptores de Activinas/antagonistas & inhibidores , Receptores de Activinas/genética , Receptores de Activinas/metabolismo , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Proliferación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endocardio/citología , Corazón/anatomía & histología , Corazón/crecimiento & desarrollo , Morfolinos/metabolismo , Troponina T/antagonistas & inhibidores , Troponina T/genética , Troponina T/metabolismo , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Angiogenesis ; 23(2): 203-220, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31828546

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder characterized by development of high-flow arteriovenous malformations (AVMs) that can lead to stroke or high-output heart failure. HHT2 is caused by heterozygous mutations in ACVRL1, which encodes an endothelial cell bone morphogenetic protein (BMP) receptor, ALK1. BMP9 and BMP10 are established ALK1 ligands. However, the unique and overlapping roles of these ligands remain poorly understood. To define the physiologically relevant ALK1 ligand(s) required for vascular development and maintenance, we generated zebrafish harboring mutations in bmp9 and duplicate BMP10 paralogs, bmp10 and bmp10-like. bmp9 mutants survive to adulthood with no overt phenotype. In contrast, combined loss of bmp10 and bmp10-like results in embryonic lethal cranial AVMs indistinguishable from acvrl1 mutants. However, despite embryonic functional redundancy of bmp10 and bmp10-like, bmp10 encodes the only required Alk1 ligand in the juvenile-to-adult period. bmp10 mutants exhibit blood vessel abnormalities in anterior skin and liver, heart dysmorphology, and premature death, and vascular defects correlate with increased cardiac output. Together, our findings support a unique role for Bmp10 as a non-redundant Alk1 ligand required to maintain the post-embryonic vasculature and establish zebrafish bmp10 mutants as a model for AVM-associated high-output heart failure, which is an increasingly recognized complication of severe liver involvement in HHT2.


Asunto(s)
Receptores de Activinas/metabolismo , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/fisiología , Proteínas Morfogenéticas Óseas/fisiología , Neovascularización Fisiológica/genética , Regeneración/genética , Proteínas de Pez Cebra/metabolismo , Receptores de Activinas/genética , Animales , Animales Modificados Genéticamente , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Malformaciones Arteriovenosas/patología , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/genética , Embrión no Mamífero , Células Endoteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
4.
Development ; 143(14): 2593-602, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27287800

RESUMEN

Heterozygous loss of the arterial-specific TGFß type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs.


Asunto(s)
Receptores de Activinas/metabolismo , Arterias/citología , Movimiento Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Receptores de Activinas/deficiencia , Animales , Apoptosis , Arterias/metabolismo , Encéfalo/irrigación sanguínea , Recuento de Células , Proliferación Celular , Circulación Coronaria/fisiología , Embrión de Mamíferos/metabolismo , Endocardio/metabolismo , Corazón/fisiología , Proteínas de Pez Cebra/deficiencia
5.
Cell Mol Life Sci ; 74(24): 4539-4560, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28871312

RESUMEN

Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal/fisiología , Telangiectasia Hemorrágica Hereditaria/metabolismo , Animales , Humanos , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
6.
Angiogenesis ; 20(4): 663-672, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28638990

RESUMEN

De novo synthesis of cytoskeleton-regulatory proteins triggered by the megakaryoblastic leukemia (MKL)/serum response factor (SRF) transcriptional system in response to pro-angiogenic growth factors lies at the heart of endothelial cell (EC) migration (a critical element of angiogenesis) and neovascularization. This study explores whether pharmacological intervention of MKL/SRF signaling axis by CCG-1423 is able to suppress angiogenesis. Our studies show that CCG-1423 inhibits migration and cord morphogenesis of EC in vitro and sprouting angiogenesis ex vivo and in vivo, suggesting CCG-1423 could be a novel anti-angiogenic agent. Kymography analyses of membrane dynamics of EC revealed that CCG-1423 treatment causes a major defect in membrane protrusion. CCG-1423 treatment led to attenuated expression of several actin-binding proteins that are important for driving membrane protrusion including ArpC2, VASP, and profilin1 (Pfn1) with the most drastic effect seen on the expression of Pfn1. Finally, depletion of Pfn1 alone is also sufficient for a dramatic decrease in sprouting angiogenesis of EC in vitro and ex vivo, further suggesting that Pfn1 depletion may be one of the mechanisms of the anti-angiogenic action of CCG-1423.


Asunto(s)
Anilidas/farmacología , Benzamidas/farmacología , Movimiento Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Actinas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Línea Celular , Extensiones de la Superficie Celular/efectos de los fármacos , Extensiones de la Superficie Celular/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Células Endoteliales/efectos de los fármacos , Humanos , Ratones Noqueados , Profilinas/metabolismo , Pez Cebra/embriología
8.
J Am Soc Nephrol ; 27(2): 495-508, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26109319

RESUMEN

Retinoic acid (RA) has been used therapeutically to reduce injury and fibrosis in models of AKI, but little is known about the regulation of this pathway and what role it has in regulating injury and repair after AKI. In these studies, we show that RA signaling is activated in mouse and zebrafish models of AKI, and that these responses limit the extent of injury and promote normal repair. These effects were mediated through a novel mechanism by which RA signaling coordinated the dynamic equilibrium of inflammatory M1 spectrum versus alternatively activated M2 spectrum macrophages. Our data suggest that locally synthesized RA represses proinflammatory macrophages, thereby reducing macrophage-dependent injury post-AKI, and activates RA signaling in injured tubular epithelium, which in turn promotes alternatively activated M2 spectrum macrophages. Because RA signaling has an essential role in kidney development but is repressed in the adult, these findings provide evidence of an embryonic signaling pathway that is reactivated after AKI and involved in reducing injury and enhancing repair.


Asunto(s)
Lesión Renal Aguda/etiología , Macrófagos/fisiología , Transducción de Señal , Tretinoina/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos BALB C
9.
Am J Hum Genet ; 93(3): 530-7, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23972370

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT), the most common inherited vascular disorder, is caused by mutations in genes involved in the transforming growth factor beta (TGF-ß) signaling pathway (ENG, ACVRL1, and SMAD4). Yet, approximately 15% of individuals with clinical features of HHT do not have mutations in these genes, suggesting that there are undiscovered mutations in other genes for HHT and possibly vascular disorders with overlapping phenotypes. The genetic etiology for 191 unrelated individuals clinically suspected to have HHT was investigated with the use of exome and Sanger sequencing; these individuals had no mutations in ENG, ACVRL1, and SMAD4. Mutations in BMP9 (also known as GDF2) were identified in three unrelated probands. These three individuals had epistaxis and dermal lesions that were described as telangiectases but whose location and appearance resembled lesions described in some individuals with RASA1-related disorders (capillary malformation-arteriovenous malformation syndrome). Analyses of the variant proteins suggested that mutations negatively affect protein processing and/or function, and a bmp9-deficient zebrafish model demonstrated that BMP9 is involved in angiogenesis. These data confirm a genetic cause of a vascular-anomaly syndrome that has phenotypic overlap with HHT.


Asunto(s)
Vasos Sanguíneos/anomalías , Factores de Diferenciación de Crecimiento/genética , Mutación/genética , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/patología , Adolescente , Adulto , Sustitución de Aminoácidos/genética , Animales , Femenino , Predisposición Genética a la Enfermedad , Factor 2 de Diferenciación de Crecimiento , Humanos , Ligandos , Masculino , Ratones , Mutación Missense/genética , Fenotipo , Unión Proteica , Procesamiento Proteico-Postraduccional , Transducción de Señal/genética , Síndrome , Factor de Crecimiento Transformador beta/genética , Pez Cebra/genética
10.
Development ; 140(16): 3403-12, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863480

RESUMEN

Blood flow plays crucial roles in vascular development, remodeling and homeostasis, but the molecular pathways required for transducing flow signals are not well understood. In zebrafish embryos, arterial expression of activin receptor-like kinase 1 (alk1), which encodes a TGFß family type I receptor, is dependent on blood flow, and loss of alk1 mimics lack of blood flow in terms of dysregulation of a subset of flow-responsive arterial genes and increased arterial endothelial cell number. These data suggest that blood flow activates Alk1 signaling to promote a flow-responsive gene expression program that limits nascent arterial caliber. Here, we demonstrate that restoration of endothelial alk1 expression to flow-deprived arteries fails to rescue Alk1 activity or normalize arterial endothelial cell gene expression or number, implying that blood flow may play an additional role in Alk1 signaling independent of alk1 induction. To this end, we define cardiac-derived Bmp10 as the crucial ligand for endothelial Alk1 in embryonic vascular development, and provide evidence that circulating Bmp10 acts through endothelial Alk1 to limit endothelial cell number in and thereby stabilize the caliber of nascent arteries. Thus, blood flow promotes Alk1 activity by concomitantly inducing alk1 expression and distributing Bmp10, thereby reinforcing this signaling pathway, which functions to limit arterial caliber at the onset of flow. Because mutations in ALK1 cause arteriovenous malformations (AVMs), our findings suggest that an impaired flow response initiates AVM development.


Asunto(s)
Receptores de Activinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Arterias Carótidas/enzimología , Embrión no Mamífero/irrigación sanguínea , Endotelio Vascular/enzimología , Receptores de Activinas/genética , Animales , Malformaciones Arteriovenosas/enzimología , Malformaciones Arteriovenosas/patología , Proteínas Morfogenéticas Óseas/genética , Recuento de Células , Embrión no Mamífero/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Miocardio/enzimología , Miocardio/patología , Fosforilación , Transporte de Proteínas , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Angiogenesis ; 18(4): 511-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26391603

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT) is a hereditary condition that results in vascular malformations throughout the body, which have a proclivity to rupture and bleed. HHT has a worldwide incidence of about 1:5000 and approximately 80 % of cases are due to mutations in ENG, ALK1 (aka activin receptor-like kinase 1 or ACVRL1) and SMAD4. Over 200 international clinicians and scientists met at Captiva Island, Florida from June 11-June 14, 2015 to present and discuss the latest research on HHT. 156 abstracts were accepted to the meeting and 60 were selected for oral presentations. The first two sections of this article present summaries of the basic science and clinical talks. Here we have summarized talks covering key themes, focusing on areas of agreement, disagreement, and unanswered questions. The final four sections summarize discussions in the Workshops, which were theme-based topical discussions led by two moderators. We hope this overview will educate as well as inspire those within the field and from outside, who have an interest in the science and treatment of HHT.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Congresos como Asunto , Endoglina , Humanos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/metabolismo , Telangiectasia Hemorrágica Hereditaria/patología , Telangiectasia Hemorrágica Hereditaria/terapia
14.
Development ; 138(8): 1573-82, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21389051

RESUMEN

Arteriovenous malformations (AVMs) are fragile direct connections between arteries and veins that arise during times of active angiogenesis. To understand the etiology of AVMs and the role of blood flow in their development, we analyzed AVM development in zebrafish embryos harboring a mutation in activin receptor-like kinase I (alk1), which encodes a TGFß family type I receptor implicated in the human vascular disorder hereditary hemorrhagic telangiectasia type 2 (HHT2). Our analyses demonstrate that increases in arterial caliber, which stem in part from increased cell number and in part from decreased cell density, precede AVM development, and that AVMs represent enlargement and stabilization of normally transient arteriovenous connections. Whereas initial increases in endothelial cell number are independent of blood flow, later increases, as well as AVMs, are dependent on flow. Furthermore, we demonstrate that alk1 expression requires blood flow, and despite normal levels of shear stress, some flow-responsive genes are dysregulated in alk1 mutant arterial endothelial cells. Taken together, our results suggest that Alk1 plays a role in transducing hemodynamic forces into a biochemical signal required to limit nascent vessel caliber, and support a novel two-step model for HHT-associated AVM development in which pathological arterial enlargement and consequent altered blood flow precipitate a flow-dependent adaptive response involving retention of normally transient arteriovenous connections, thereby generating AVMs.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Malformaciones Arteriovenosas/metabolismo , Velocidad del Flujo Sanguíneo/fisiología , Receptores de Activinas Tipo I/genética , Animales , Malformaciones Arteriovenosas/etiología , Embrión no Mamífero , Hibridación Fluorescente in Situ , Telangiectasia Hemorrágica Hereditaria/etiología , Telangiectasia Hemorrágica Hereditaria/metabolismo , Pez Cebra
15.
Development ; 138(9): 1705-15, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21429985

RESUMEN

The cranial vasculature is essential for the survival and development of the central nervous system and is important in stroke and other brain pathologies. Cranial vessels form in a reproducible and evolutionarily conserved manner, but the process by which these vessels assemble and acquire their stereotypic patterning remains unclear. Here, we examine the stepwise assembly and patterning of the vascular network of the zebrafish hindbrain. The major artery supplying the hindbrain, the basilar artery, runs along the ventral keel of the hindbrain in all vertebrates. We show that this artery forms by a novel process of medial sprouting and migration of endothelial cells from a bilateral pair of primitive veins, the primordial hindbrain channels. Subsequently, a second wave of dorsal sprouting from the primordial hindbrain channels gives rise to angiogenic central arteries that penetrate into and innervate the hindbrain. The chemokine receptor cxcr4a is expressed in migrating endothelial cells of the primordial hindbrain channels, whereas its ligand cxcl12b is expressed in the hindbrain neural keel immediately adjacent to the assembling basilar artery. Knockdown of either cxcl12b or cxcr4a results in defects in basilar artery formation, showing that the assembly and patterning of this crucial artery depends on chemokine signaling.


Asunto(s)
Vasos Sanguíneos/embriología , Tipificación del Cuerpo/fisiología , Rombencéfalo/irrigación sanguínea , Rombencéfalo/embriología , Vertebrados/embriología , Animales , Animales Modificados Genéticamente , Arterias/embriología , Arterias/metabolismo , Arterias/fisiología , Vasos Sanguíneos/metabolismo , Tipificación del Cuerpo/genética , Células Cultivadas , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Modelos Biológicos , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Rombencéfalo/metabolismo , Troponina T/genética , Troponina T/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Vertebrados/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología
16.
Cells ; 13(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334677

RESUMEN

Endothelial cells (ECs) respond to concurrent stimulation by biochemical factors and wall shear stress (SS) exerted by blood flow. Disruptions in flow-induced responses can result in remodeling issues and cardiovascular diseases, but the detailed mechanisms linking flow-mechanical cues and biochemical signaling remain unclear. Activin receptor-like kinase 1 (ALK1) integrates SS and ALK1-ligand cues in ECs; ALK1 mutations cause hereditary hemorrhagic telangiectasia (HHT), marked by arteriovenous malformation (AVM) development. However, the mechanistic underpinnings of ALK1 signaling modulation by fluid flow and the link to AVMs remain uncertain. We recorded EC responses under varying SS magnitudes and ALK1 ligand concentrations by assaying pSMAD1/5/9 nuclear localization using a custom multi-SS microfluidic device and a custom image analysis pipeline. We extended the previously reported synergy between SS and BMP9 to include BMP10 and BMP9/10. Moreover, we demonstrated that this synergy is effective even at extremely low SS magnitudes (0.4 dyn/cm2) and ALK1 ligand range (femtogram/mL). The synergistic response to ALK1 ligands and SS requires the kinase activity of ALK1. Moreover, ALK1's basal activity and response to minimal ligand levels depend on endocytosis, distinct from cell-cell junctions, cytoskeleton-mediated mechanosensing, or cholesterol-enriched microdomains. However, an in-depth analysis of ALK1 receptor trafficking's molecular mechanisms requires further investigation.


Asunto(s)
Malformaciones Arteriovenosas , Telangiectasia Hemorrágica Hereditaria , Humanos , Células Endoteliales , Ligandos , Telangiectasia Hemorrágica Hereditaria/genética , Transducción de Señal , Proteínas Morfogenéticas Óseas
17.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328175

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that BMP10 microinjection into the vasculature in the absence of flow enhances acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that Bmp10 acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.

20.
Dev Dyn ; 240(3): 682-94, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21337466

RESUMEN

Bone morphogenetic proteins (BMPs) are critical players in development and disease, regulating such diverse processes as dorsoventral patterning, palate formation, and ossification. These ligands are classically considered to signal via BMP receptor-specific Smad proteins 1, 5, and 8. To determine the spatiotemporal pattern of Smad1/5/8 activity and thus canonical BMP signaling in the developing zebrafish embryo, we generated a transgenic line expressing EGFP under the control of a BMP-responsive element. EGFP is expressed in many established BMP signaling domains and is responsive to alterations in BMP type I receptor activity and smad1 and smad5 expression. This transgenic Smad1/5/8 reporter line will be useful for determining ligand and receptor requirements for specific domains of BMP activity, as well as for genetic and pharmacological screens aimed at identifying enhancers or suppressors of canonical BMP signaling.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Smad/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/genética , Embrión no Mamífero/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Proteínas Smad/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA