Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2216901120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893267

RESUMEN

Cell-cell communication plays a fundamental role in multicellular organisms. Cell-based cancer immunotherapies rely on the ability of innate or engineered receptors on immune cells to engage specific antigens on cancer cells to induce tumor kill. To improve the development and translation of these therapies, imaging tools capable of noninvasively and spatiotemporally visualizing immune-cancer cell interactions would be highly valuable. Using the synthetic Notch (SynNotch) system, we engineered T cells that upon interaction with a chosen antigen (CD19) on neighboring cancer cells induce the expression of optical reporter genes and the human-derived, magnetic resonance imaging (MRI) reporter gene organic anion transporting polypeptide 1B3 (OATP1B3). Administration of engineered T cells induced the antigen-dependent expression of all our reporter genes in mice bearing CD19-positive tumors but not CD19-negative tumors. Notably, due to the high spatial resolution and tomographic nature of MRI, contrast-enhanced foci within CD19-positive tumors representing OATP1B3-expressing T cells were clearly visible and their distribution was readily mapped. We then extended this technology onto human natural killer-92 (NK-92) cells, observing similar CD19-dependent reporter activity in tumor-bearing mice. Furthermore, we show that when delivered intravenously, engineered NK-92 cells can be detected via bioluminescence imaging in a systemic cancer model. With continued work, this highly modular imaging strategy could aid in the monitoring of cell therapies in patients and, beyond this, augment our understanding of how different cell populations interact within the body during normal physiology or disease.


Asunto(s)
Neoplasias , Transportadores de Anión Orgánico , Humanos , Ratones , Animales , Genes Reporteros , Neoplasias/genética , Células Asesinas Naturales , Imagen por Resonancia Magnética/métodos , Transportadores de Anión Orgánico/genética , Línea Celular Tumoral
2.
Artículo en Inglés | MEDLINE | ID: mdl-38722382

RESUMEN

Chimeric antigen receptor (CAR) cell therapies utilize CARs to redirect immune cells towards cancer cells expressing specific antigens like human epidermal growth factor receptor 2 (HER2). Despite their potential, CAR T cell therapies exhibit variable response rates and adverse effects in some patients. Non-invasive molecular imaging can aid in predicting patient outcomes by tracking infused cells post-administration. CAR-T cells are typically autologous, increasing manufacturing complexity and costs. An alternative approach involves developing CAR natural killer (CAR-NK) cells as an off-the-shelf allogeneic product. In this study, we engineered HER2-targeted CAR-NK cells co-expressing the positron emission tomography (PET) reporter gene human sodium-iodide symporter (NIS) and assessed their therapeutic efficacy and PET imaging capability in a HER2 ovarian cancer mouse model.NK-92 cells were genetically modified to express a HER2-targeted CAR, the bioluminescence imaging reporter Antares, and NIS. HER2-expressing ovarian cancer cells were engineered to express the bioluminescence reporter Firefly luciferase (Fluc). Co-culture experiments demonstrated significantly enhanced cytotoxicity of CAR-NK cells compared to naive NK cells. In vivo studies involving mice with Fluc-expressing tumors revealed that those treated with CAR-NK cells exhibited reduced tumor burden and prolonged survival compared to controls. Longitudinal bioluminescence imaging demonstrated stable signals from CAR-NK cells over time. PET imaging using the NIS-targeted tracer 18F-tetrafluoroborate ([18F]TFB) showed significantly higher PET signals in mice treated with NIS-expressing CAR-NK cells.Overall, our study showcases the therapeutic potential of HER2-targeted CAR-NK cells in an aggressive ovarian cancer model and underscores the feasibility of using human-derived PET reporter gene imaging to monitor these cells non-invasively in patients.

3.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108685

RESUMEN

Duchenne muscular dystrophy (DMD) is a neuromuscular disorder caused by dystrophin loss-notably within muscles and the central neurons system. DMD presents as cognitive weakness, progressive skeletal and cardiac muscle degeneration until pre-mature death from cardiac or respiratory failure. Innovative therapies have improved life expectancy; however, this is accompanied by increased late-onset heart failure and emergent cognitive degeneration. Thus, better assessment of dystrophic heart and brain pathophysiology is needed. Chronic inflammation is strongly associated with skeletal and cardiac muscle degeneration; however, neuroinflammation's role is largely unknown in DMD despite being prevalent in other neurodegenerative diseases. Here, we present an inflammatory marker translocator protein (TSPO) positron emission tomography (PET) protocol for in vivo concomitant assessment of immune cell response in hearts and brains of a dystrophin-deficient mouse model [mdx:utrn(+/-)]. Preliminary analysis of whole-body PET imaging using the TSPO radiotracer, [18F]FEPPA in four mdx:utrn(+/-) and six wildtype mice are presented with ex vivo TSPO-immunofluorescence tissue staining. The mdx:utrn(+/-) mice showed significant elevations in heart and brain [18F]FEPPA activity, which correlated with increased ex vivo fluorescence intensity, highlighting the potential of TSPO-PET to simultaneously assess presence of cardiac and neuroinflammation in dystrophic heart and brain, as well as in several organs within a DMD model.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Animales , Ratones , Distrofina/metabolismo , Ratones Endogámicos mdx , Enfermedades Neuroinflamatorias , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Cardiomiopatías/metabolismo , Tomografía de Emisión de Positrones , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad
4.
Cancer Immunol Immunother ; 71(6): 1281-1294, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34657195

RESUMEN

Cell-based cancer immunotherapies are becoming a routine part of the armamentarium against cancer. While remarkable successes have been seen, including durable remissions, not all patients will benefit from these therapies and many can suffer from life-threatening side effects. These differences in efficacy and safety across patients and across tumor types (e.g., blood vs. solid), are thought to be due to differences in how well the immune cells traffic to their target tissue (e.g., tumor, lymph nodes, etc.) whilst avoiding non-target tissues. Across patient variability can also stem from whether the cells interact with (i.e., communicate with) their intended target cells (e.g., cancer cells), as well as if they proliferate and survive long enough to yield potent and long-lasting therapeutic effects. However, many cell-based therapies are monitored by relatively simple blood tests that lack any spatial information and do not reflect how many immune cells have ended up at particular tissues. The ex vivo labeling and imaging of infused therapeutic immune cells can provide a more precise and dynamic understanding of whole-body immune cell biodistribution, expansion, viability, and activation status in individual patients. In recent years numerous cellular imaging technologies have been developed that may provide this much-needed information on immune cell fate. For this review, we summarize various ex vivo labeling and imaging approaches that allow for tracking of cellular immunotherapies for cancer. Our focus is on clinical imaging modalities and summarize the progression from experimental to therapeutic settings. The imaging information provided by these technologies can potentially be used for many purposes including improved real-time understanding of therapeutic efficacy and potential side effects in individual patients after cell infusion; the ability to more readily compare new therapeutic cell designs to current designs for various parameters such as improved trafficking to target tissues and avoidance of non-target tissues; and the long-term ability to identify patient populations that are likely to be positive responders and at low-risk of side effects.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Inmunoterapia/métodos , Ganglios Linfáticos , Imagen Molecular , Neoplasias/terapia , Distribución Tisular
5.
Br J Sports Med ; 55(8): 416, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33097528

RESUMEN

Football is a global game which is constantly evolving, showing substantial increases in physical and technical demands. Nutrition plays a valuable integrated role in optimising performance of elite players during training and match-play, and maintaining their overall health throughout the season. An evidence-based approach to nutrition emphasising, a 'food first' philosophy (ie, food over supplements), is fundamental to ensure effective player support. This requires relevant scientific evidence to be applied according to the constraints of what is practical and feasible in the football setting. The science underpinning sports nutrition is evolving fast, and practitioners must be alert to new developments. In response to these developments, the Union of European Football Associations (UEFA) has gathered experts in applied sports nutrition research as well as practitioners working with elite football clubs and national associations/federations to issue an expert statement on a range of topics relevant to elite football nutrition: (1) match day nutrition, (2) training day nutrition, (3) body composition, (4) stressful environments and travel, (5) cultural diversity and dietary considerations, (6) dietary supplements, (7) rehabilitation, (8) referees and (9) junior high-level players. The expert group provide a narrative synthesis of the scientific background relating to these topics based on their knowledge and experience of the scientific research literature, as well as practical experience of applying knowledge within an elite sports setting. Our intention is to provide readers with content to help drive their own practical recommendations. In addition, to provide guidance to applied researchers where to focus future efforts.


Asunto(s)
Rendimiento Atlético/fisiología , Dieta Saludable , Política Nutricional , Fútbol/fisiología , Traumatismos en Atletas/rehabilitación , Composición Corporal , Conducta Competitiva/fisiología , Diversidad Cultural , Suplementos Dietéticos , Ambiente , Femenino , Humanos , Masculino , Necesidades Nutricionales , Acondicionamiento Físico Humano/fisiología , Viaje
6.
J Anat ; 236(6): 1146-1153, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32103496

RESUMEN

The majority of lymph generated in the body is returned to the blood circulation via the lymphovenous junction (LVJ) of the thoracic duct (TD). A lymphovenous valve (LVV) is thought to guard this junction by regulating the flow of lymph to the veins and preventing blood from entering the lymphatic system. Despite these important functions, the morphology and mechanism of this valve remains unclear. The aim of this study was to investigate the anatomy of the LVV of the TD. To do this, the TD and the great veins of the left side of the neck were harvested from 16 human cadavers. The LVJs from 12 cadavers were successfully identified and examined macroscopically, microscopically, and using microcomputed tomography. In many specimens, the TD branched before entering the veins. Thus, from 12 cadavers, 21 LVJs were examined. Valves were present at 71% of LVJs (15/21) and were absent in the remainder. The LVV, when present, was typically a bicuspid semilunar valve, although the relative size and position of its cusps were variable. Microscopically, the valve cusps comprised luminal extensions of endothelium with a thin core of collagenous extracellular matrix. This study clearly demonstrated the morphology of the human LVV. This valve may prevent blood from entering the lymphatic system, but its variability and frequent absence calls into question its utility. Further structural and functional studies are required to better define the role of the LVV in health and disease.


Asunto(s)
Sistema Linfático/anatomía & histología , Vasos Linfáticos/anatomía & histología , Conducto Torácico/anatomía & histología , Anciano , Anciano de 80 o más Años , Cadáver , Femenino , Humanos , Sistema Linfático/diagnóstico por imagen , Vasos Linfáticos/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Conducto Torácico/diagnóstico por imagen , Microtomografía por Rayos X
7.
Gene Ther ; 26(5): 177-186, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30867586

RESUMEN

Early and accurate detection of cancer is essential to optimising patient outcomes. Of particular importance to prostate cancer is the ability to determine the aggressiveness of a primary tumour, which allows for effective management of patient care. In this work, we propose using gene vectors called tumour-activatable minicircles which deliver an exogenously encoded reporter gene into cancer cells, forcing them to produce a unique and sensitive biomarker. These minicircles express a blood reporter protein called secreted embryonic alkaline phosphatase mediated by the tumour-specific survivin promoter, which exhibits activity graded to prostate cancer aggressiveness. Together, these components underlie a detection system where levels of blood reporter are indicative of not only the presence, but also the metastatic potential of a tumour. Our goal was to assess the ability of tumour-activatable minicircles to detect and characterise primary prostate lesions. Our minicircles produced reporter levels related to survivin expression across a range of prostate cancer cell lines. When survivin-driven minicircles were administered intratumourally into mice, reporter levels in blood samples were significantly higher (p < 0.05) in mice carrying prostate tumours of high versus low-aggressiveness. Continued development of this gene-based system could provide clinicians with a powerful tool to evaluate prostate cancer aggressiveness using a sensitive and affordable blood assay.


Asunto(s)
Biomarcadores de Tumor/genética , Genes Reporteros , Neoplasias de la Próstata/patología , Survivin/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Células Cultivadas , Vectores Genéticos/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células PC-3 , Regiones Promotoras Genéticas , Neoplasias de la Próstata/sangre , Survivin/metabolismo
8.
J Neuroinflammation ; 15(1): 55, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29471880

RESUMEN

BACKGROUND: The cystine/glutamate antiporter (xc-) has been implicated in several neurological disorders and, specifically, in multiple sclerosis (MS) as a mediator of glutamate excitotoxicity and proinflammatory immune responses. We aimed to evaluate an xc-specific positron emission tomography (PET) radiotracer, (4S)-4-(3-[18F]fluoropropyl)-L-glutamate ([18F]FSPG), for its ability to allow non-invasive monitoring of xc- activity in a mouse model of MS. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG35-55) peptide in complete Freund's adjuvant (CFA) followed by pertussis toxin. Control mice received CFA emulsion and pertussis toxin without MOG peptide, while a separate cohort of naïve mice received no treatment. PET studies were performed to investigate the kinetics and distribution of [18F]FSPG in naïve, control, pre-symptomatic, and symptomatic EAE mice, compared to 18F-fluorodeoxyglucose ([18F]FDG). After final PET scans, each mouse was perfused and radioactivity in dissected tissues was measured using a gamma counter. Central nervous system (CNS) tissues were further analyzed using ex vivo autoradiography or western blot. [18F]FSPG uptake in human monocytes, and T cells pre- and post-activation was investigated in vitro. RESULTS: [18F]FSPG was found to be more sensitive than [18F]FDG at detecting pathological changes in the spinal cord and brain of EAE mice. Even before clinical signs of disease, a small but significant increase in [18F]FSPG signal was observed in the spinal cord of EAE mice compared to controls. This increase in PET signal became more pronounced in symptomatic EAE mice and was confirmed by ex vivo biodistribution and autoradiography. Likewise, in the brain of symptomatic EAE mice, [18F]FSPG uptake was significantly higher than controls, with the largest changes observed in the cerebellum. Western blot analyses of CNS tissues revealed a significant correlation between light chain of xc- (xCT) protein levels, the subunit of xc- credited with its transporter activity, and [18F]FSPG-PET signal. In vitro [18F]FSPG uptake studies suggest that both activated monocytes and T cells contribute to the observed in vivo PET signal. CONCLUSION: These data highlight the promise of [18F]FSPG-PET as a technique to provide insights into neuroimmune interactions in MS and the in vivo role of xc- in the development and progression of this disease, thus warranting further investigation.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/metabolismo , Radioisótopos de Flúor/metabolismo , Glutamatos/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Células Cultivadas , Fluorodesoxiglucosa F18/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo
9.
J Anat ; 233(1): 1-14, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29635686

RESUMEN

The thoracic duct (TD) transports lymph drained from the body to the venous system in the neck via the lymphovenous junction. There has been increased interest in the TD lymph (including gut lymph) because of its putative role in the promotion of systemic inflammation and organ dysfunction during acute and critical illness. Minimally invasive TD cannulation has recently been described as a potential method to access TD lymph for investigation. However, marked anatomical variability exists in the terminal segment and the physiology regarding the ostial valve and terminal TD is poorly understood. A systematic review was conducted using three databases from 1909 until May 2017. Human and animal studies were included and data from surgical, radiological and cadaveric studies were retrieved. Sixty-three articles from the last 108 years were included in the analysis. The terminal TD exists as a single duct in its terminal course in 72% of cases and 13% have multiple terminations: double (8.5%), triple (1.8%) and quadruple (2.2%). The ostial valve functions to regulate flow in relation to the respiratory cycle. The patency of this valve found at the lymphovenous junction opening, is determined by venous wall tension. During inspiration, central venous pressure (CVP) falls and the valve cusps collapse to allow antegrade flow of lymph into the vein. During early expiration when CVP and venous wall tension rises, the ostial valve leaflets cover the opening of the lymphovenous junction preventing antegrade lymph flow. During chronic disease states associated with an elevated mean CVP (e.g. in heart failure or cirrhosis), there is a limitation of flow across the lymphovenous junction. Although lymph production is increased in both heart failure and cirrhosis, TD lymph outflow across the lymphovenous junction is unable to compensate for this increase. In conclusion the terminal TD shows marked anatomical variability and TD lymph flow is controlled at the ostial valve, which responds to changes in CVP. This information is relevant to techniques for cannulating the TD, with the aid of minimally invasive methods and high resolution ultrasonography, to enable longitudinal physiology and lymph composition studies in awake patients with both acute and chronic disease.


Asunto(s)
Vena Safena/anatomía & histología , Vena Safena/fisiología , Conducto Torácico/anatomía & histología , Conducto Torácico/fisiología , Animales , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Venas Yugulares/anatomía & histología , Venas Yugulares/fisiología , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología
10.
Proc Natl Acad Sci U S A ; 112(10): 3068-73, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713388

RESUMEN

Earlier detection of cancers can dramatically improve the efficacy of available treatment strategies. However, despite decades of effort on blood-based biomarker cancer detection, many promising endogenous biomarkers have failed clinically because of intractable problems such as highly variable background expression from nonmalignant tissues and tumor heterogeneity. In this work we present a tumor-detection strategy based on systemic administration of tumor-activatable minicircles that use the pan-tumor-specific Survivin promoter to drive expression of a secretable reporter that is detectable in the blood nearly exclusively in tumor-bearing subjects. After systemic administration we demonstrate a robust ability to differentiate mice bearing human melanoma metastases from tumor-free subjects for up to 2 wk simply by measuring blood reporter levels. Cumulative change in reporter levels also identified tumor-bearing subjects, and a receiver operator-characteristic curve analysis highlighted this test's performance with an area of 0.918 ± 0.084. Lung tumor burden additionally correlated (r(2) = 0.714; P < 0.05) with cumulative reporter levels, indicating that determination of disease extent was possible. Continued development of our system could improve tumor detectability dramatically because of the temporally controlled, high reporter expression in tumors and nearly zero background from healthy tissues. Our strategy's highly modular nature also allows it to be iteratively optimized over time to improve the test's sensitivity and specificity. We envision this system could be used first in patients at high risk for tumor recurrence, followed by screening high-risk populations before tumor diagnosis, and, if proven safe and effective, eventually may have potential as a powerful cancer-screening tool for the general population.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias/diagnóstico , Humanos , Neoplasias/sangre , Curva ROC
12.
J Magn Reson Imaging ; 44(3): 673-82, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26921220

RESUMEN

PURPOSE: To develop a rabbit model of xanthogranuloma based on supplementation of dietary cholesterol. The aim of this study was to analyze the xanthogranulomatous lesions using magnetic resonance imaging (MRI) and histological examination. MATERIALS AND METHODS: Rabbits were fed a low-level cholesterol (CH) diet (n = 10) or normal chow (n = 5) for 24 months. In vivo brain imaging was performed on a 3T MR system using fast imaging employing steady state acquisition, susceptibility-weighted imaging, spoiled gradient recalled, T1 -weighted inversion recovery imaging and T1 relaxometry, PD-weighted and T2 -weighted spin-echo imaging and T2 relaxometry, iterative decomposition of water and fat with echo asymmetry and least-squares estimation, ultrashort TE MRI (UTE-MRI), and T2* relaxometry. MR images were evaluated using a Likert scale for lesion presence and quantitative analysis of lesion size, ventricular volume, and T1 , T2 , and T2* values of lesions was performed. After imaging, brain specimens were examined using histological methods. RESULTS: In vivo MRI revealed that 6 of 10 CH-fed rabbits developed lesions in the choroid plexus. Region-of-interest analysis showed that for CH-fed rabbits the mean lesion volume was 8.5 ± 2.6 mm(3) and the volume of the lateral ventricle was significantly increased compared to controls (P < 0.01). The lesions showed significantly shorter mean T2 values (35 ± 12 msec, P < 0.001), longer mean T1 values (1581 ± 146 msec, P < 0.05), and shorter T2* values (22 ± 13 msec, P < 0.001) compared to adjacent brain structures. The ultrashort T2* components were visible using UTE-MRI. Histopathologic evaluation of lesions demonstrated features of human xanthogranuloma. CONCLUSION: Rabbits fed a low-level CH diet develop sizable intraventricular masses that have similar histopathological features as human xanthogranuloma. Multiparametric MRI techniques were able to provide information about the complex composition of these lesions. J. Magn. Reson. Imaging 2016;44:673-682.


Asunto(s)
Encefalopatías/diagnóstico por imagen , Encefalopatías/patología , Colesterol en la Dieta , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética/métodos , Xantogranuloma Juvenil/diagnóstico por imagen , Xantogranuloma Juvenil/patología , Animales , Masculino , Conejos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
J Surg Res ; 204(1): 213-27, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27451889

RESUMEN

BACKGROUND: The evolution of the "gut-lymph concept" has promoted thoracic duct (TD) lymph drainage as a possible treatment to reduce systemic inflammation and end-organ dysfunction in acute illness. The aim was to review the published experience of thoracic duct interventions (TDIs) aimed at improving clinical outcomes. METHODS: A search of three databases (MEDLINE, EMBASE, and EMBASE CLASSIC) over the last 60 y. The indications for intervention, the technique, and clinical outcomes were reviewed. RESULTS: There were a wide range of indications for TDI. These included reducing rejection after transplantation, treating inflammatory diseases, and reducing chronic failure of the liver, kidney, and heart. The techniques included TD cannulation and lymphovenuous fistula. The outcomes were variable and often equivocal, and this appears to reflect poor design quality. There is clinical equipoise regarding a therapeutic role of (TD lymph drainage in acute pancreatitis, and probably other acute diseases. CONCLUSIONS: Until well-designed clinical trials are undertaken, the clinical benefits of TDIs will remain promising, but uncertain.


Asunto(s)
Drenaje/métodos , Rechazo de Injerto/cirugía , Inflamación/cirugía , Insuficiencia Multiorgánica/cirugía , Conducto Torácico/cirugía , Enfermedad Crítica , Humanos , Resultado del Tratamiento
16.
Mol Ther Nucleic Acids ; 35(3): 102248, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39040503

RESUMEN

Over 30,000 point mutations are associated with debilitating diseases, including many cancer types, underscoring a critical need for targeted genomic solutions. CRISPR base editors, like adenine base editors (ABEs) and cytosine base editors (CBEs), enable precise modifications by converting adenine to guanine and cytosine to thymine, respectively. Challenges in efficiency and safety concerns regarding viral vectors used in delivery limit the scope of base editing. This study introduces non-viral minicircles, bacterial-backbone-free plasmids, as a delivery vehicle for ABEs and CBEs. The research uses cells engineered with the "Gene On" (GO) reporter gene systems for tracking minicircle-delivered ABEs, CBEs, or Cas9 nickase (control), using green fluorescent protein (GFPGO), bioluminescence reporter firefly luciferase (LUCGO), or a highly sensitive Akaluciferase (AkalucGO) designed in this study. The results show that transfection of minicircles expressing CBE or ABE resulted in significantly higher GFP expression and luminescence signals over controls, with minicircles demonstrating the most substantial editing. This study presents minicircles as a new strategy for base editor delivery and develops an enhanced bioluminescence imaging reporter system for tracking ABE activity. Future studies aim to evaluate the use of minicircles in preclinical cancer models, facilitating potential clinical applications.

17.
Theranostics ; 14(6): 2464-2488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646648

RESUMEN

Cancer has remained a formidable challenge in medicine and has claimed an enormous number of lives worldwide. Theranostics, combining diagnostic methods with personalized therapeutic approaches, shows huge potential to advance the battle against cancer. This review aims to provide an overview of theranostics in oncology: exploring its history, current advances, challenges, and prospects. We present the fundamental evolution of theranostics from radiotherapeutics, cellular therapeutics, and nanotherapeutics, showcasing critical milestones in the last decade. From the early concept of targeted drug delivery to the emergence of personalized medicine, theranostics has benefited from advances in imaging technologies, molecular biology, and nanomedicine. Furthermore, we emphasize pertinent illustrations showcasing that revolutionary strategies in cancer management enhance diagnostic accuracy and provide targeted therapies customized for individual patients, thereby facilitating the implementation of personalized medicine. Finally, we describe future perspectives on current challenges, emerging topics, and advances in the field.


Asunto(s)
Neoplasias , Medicina de Precisión , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Medicina de Precisión/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Historia del Siglo XX , Animales , Historia del Siglo XXI
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA