Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 76(4): 529-530, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31756322

RESUMEN

The study by Tan-Wong et al. (2019) in this issue of Molecular Cell reveals a capacity of R-loops to promote antisense transcription expanding our view of the features that a DNA region may have to act as a promoter.


Asunto(s)
Mamíferos , Estructuras R-Loop , Animales , Regiones Promotoras Genéticas
2.
Nucleic Acids Res ; 52(7): 3623-3635, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38281203

RESUMEN

Certain DNA sequences can adopt a non-B form in the genome that interfere with DNA-templated processes, including transcription. Among the sequences that are intrinsically difficult to transcribe are those that tend to form R-loops, three-stranded nucleic acid structures formed by a DNA-RNA hybrid and the displaced ssDNA. Here we compared the transcription of an endogenous gene with and without an R-loop-forming sequence inserted. We show that, in agreement with previous in vivo and in vitro analyses, transcription elongation is delayed by R-loops in yeast. Importantly, we demonstrate that the Rat1 transcription terminator factor facilitates transcription throughout such structures by inducing premature termination of arrested RNAPIIs. We propose that RNase H degrades the RNA moiety of the hybrid, providing an entry site for Rat1. Thus, we have uncovered an unanticipated function of Rat1 as a transcription restoring factor opening up the possibility that it may also promote transcription through other genomic DNA structures intrinsically difficult to transcribe. If R-loop-mediated transcriptional stress is not relieved by Rat1, it will cause genomic instability, probably through the increase of transcription-replication conflicts, a deleterious situation that could lead to cancer.


Asunto(s)
Exorribonucleasas , Estructuras R-Loop , Ribonucleasa H , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminación de la Transcripción Genética , Estructuras R-Loop/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , Saccharomyces cerevisiae/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética
3.
Genes Dev ; 32(13-14): 965-977, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29954833

RESUMEN

R loops are an important source of genome instability, largely due to their negative impact on replication progression. Yra1/ALY is an abundant RNA-binding factor conserved from yeast to humans and required for mRNA export, but its excess causes lethality and genome instability. Here, we show that, in addition to ssDNA and ssRNA, Yra1 binds RNA-DNA hybrids in vitro and, when artificially overexpressed, can be recruited to chromatin in an RNA-DNA hybrid-dependent manner, stabilizing R loops and converting them into replication obstacles in vivo. Importantly, an excess of Yra1 increases R-loop-mediated genome instability caused by transcription-replication collisions regardless of whether they are codirectional or head-on. It also induces telomere shortening in telomerase-negative cells and accelerates senescence, consistent with a defect in telomere replication. Our results indicate that RNA-DNA hybrids form transiently in cells regardless of replication and, after stabilization by excess Yra1, compromise genome integrity, in agreement with a two-step model of R-loop-mediated genome instability. This work opens new perspectives to understand transcription-associated genome instability in repair-deficient cells, including tumoral cells.


Asunto(s)
Inestabilidad Cromosómica/genética , Replicación del ADN , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Transcripción Genética , Cromatina/metabolismo , Hibridación de Ácido Nucleico , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo
4.
Mol Cell ; 66(5): 597-609.e5, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575656

RESUMEN

R loops have positive physiological roles, but they can also be deleterious by causing genome instability, and the mechanisms for this are unknown. Here we identified yeast histone H3 and H4 mutations that facilitate R loops but do not cause instability. R loops containing single-stranded DNA (ssDNA), versus RNA-DNA hybrids alone, were demonstrated using ssDNA-specific human AID and bisulfite. Notably, they are similar size regardless of whether or not they induce genome instability. Contrary to mutants causing R loop-mediated instability, these histone mutants do not accumulate H3 serine-10 phosphate (H3S10-P). We propose a two-step mechanism in which, first, an altered chromatin facilitates R loops, and second, chromatin is modified, including H3S10-P, as a requisite for compromising genome integrity. Consistently, these histone mutations suppress the high H3S10 phosphorylation and genomic instability of hpr1 and sen1 mutants. Therefore, contrary to what was previously believed, R loops do not cause genome instability by themselves.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , ADN de Hongos/genética , Genoma Fúngico , Inestabilidad Genómica , Histonas/genética , Mutación Puntual , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Cromatina/química , Cromatina/metabolismo , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Fosforilación , Conformación Proteica , Procesamiento Proteico-Postraduccional , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
5.
Cell ; 135(2): 207-8, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957194

RESUMEN

The THO complex and Sub2 RNA helicase have been shown to function in both transcription and mRNA processing. Rougemaille et al. (2008) now uncover evidence that THO/Sub2 coordinates mRNA processing and nuclear export.


Asunto(s)
Transporte Activo de Núcleo Celular , Poro Nuclear/metabolismo , Transporte de ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN de Hongos/metabolismo
6.
Mol Cell ; 52(4): 583-90, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24211264

RESUMEN

R loops are transcription byproducts that constitute a threat to genome integrity. Here we show that R loops are tightly linked to histone H3 S10 phosphorylation (H3S10P), a mark of chromatin condensation. Chromatin immunoprecipitation (ChIP)-on-chip (ChIP-chip) analyses reveal H3S10P accumulation at centromeres, pericentromeric chromatin, and a large number of active open reading frames (ORFs) in R-loop-accumulating yeast cells, better observed in G1. Histone H3S10 plays a key role in maintaining genome stability, as scored by ectopic recombination and plasmid loss, Rad52 foci, and Rad53 checkpoint activation. H3S10P coincides with the presence of DNA-RNA hybrids, is suppressed by ribonuclease H overexpression, and causes reduced accessibility of restriction endonucleases, implying a tight connection between R loops, H3S10P, and chromatin compaction. Such histone modifications were also observed in R-loop-accumulating Caenorhabditis elegans and HeLa cells. We therefore provide a role of RNA in chromatin structure essential to understand how R loops modulate genome dynamics.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , ADN de Cadena Simple/genética , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Caenorhabditis elegans/genética , Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina , Inestabilidad Genómica , Células HeLa , Humanos , Meiosis , Mitosis , Sistemas de Lectura Abierta , Fosforilación , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética
7.
Mol Cell ; 41(1): 21-32, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21211720

RESUMEN

Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.


Asunto(s)
ADN Helicasas/fisiología , Inestabilidad Genómica , ARN Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Transcripción Genética , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Cell ; 36(1): 88-98, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19818712

RESUMEN

Transcription termination of RNA polymerase II (Pol II) on protein-coding genes in S. cerevisiae relies on pA site recognition by 3' end processing factors. Here we demonstrate the existence of two alternative termination mechanisms that rescue polymerases failing to disengage from the template at pA sites. One of these fail-safe mechanisms is mediated by the NRD complex, similar to termination of short noncoding genes. The other termination mechanism is mediated by Rnt1 cleavage of the nascent transcript. Both fail-safe termination mechanisms trigger degradation of readthrough transcripts by the exosome. However, Rnt1-mediated termination can also enhance the usage of weak pA signals and thereby generate functional mRNA. We propose that these alternative Pol II termination pathways serve the dual function of avoiding transcription interference and promoting rapid removal of aberrant transcripts.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Ribonucleasa III/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Regiones Terminadoras Genéticas/fisiología , Transcripción Genética/fisiología , Región de Flanqueo 3'/fisiología , Aciltransferasas/genética , Sitios de Unión/genética , ADN/metabolismo , ADN Helicasas/genética , Exorribonucleasas/genética , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/fisiología , Plásmidos/genética , Plásmidos/metabolismo , Unión Proteica/fisiología , ARN Helicasas/genética , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
EMBO J ; 30(10): 1953-64, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21478823

RESUMEN

To clarify the role of a number of mRNA processing factors in transcription elongation, we developed an in vivo assay for direct analysis of elongation on chromatin. The assay relies on two substrates containing two G-less cassettes separated by either a long and GC-rich or a short and GC-poor DNA sequence (G-less-based run-on (GLRO) assay). We demonstrate that PAF, THSC/TREX-2, SAGA, the exosome component Rrp6 and two subunits of cleavage factor IA (Rna14 and Rna15) are required for efficient transcription elongation, in contrast to some results obtained using other assays. Next, we undertook a mutant screen and found out that the Nup84 nucleoporin complex is also required for transcription elongation, as confirmed by the GLRO assay and RNA polymerase II chromatin immunoprecipitations. Therefore, in addition to showing that the GLRO assay is a sensitive and reliable method for the analysis of elongation in vivo, this study provides evidence for a new role of the Nup84 complex and a number of mRNA processing factors in transcription elongation that supports a connection of pre-mRNA processing and nuclear export with transcription elongation.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Transcripción Genética , Inmunoprecipitación de Cromatina , Elementos Transponibles de ADN , Técnicas de Inactivación de Genes , Biología Molecular/métodos , Mutagénesis Insercional , Proteínas de Complejo Poro Nuclear/genética , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Biochim Biophys Acta ; 1819(6): 514-20, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22207203

RESUMEN

Coupling of transcription with mRNA processing and export has been shown to be relevant to efficient gene expression. A number of studies have determined that THO/TREX, a nuclear protein complex conserved from yeast to humans, plays an important role in mRNP biogenesis connecting transcription elongation, mRNA export and preventing genetic instability. Recent data indicates that THO could be relevant to different mRNA processing steps, including the 3'-end formation, transcript release and export. Novel connections of THO to proteins related to the splicing machinery, provide new views about possible functions of THO in mRNP biogenesis. In this review, we summarize the previous and new results concerning the impact of THO in transcription and its biological implications, with a special emphasis on the relationship with THSC/TREX-2 and other functionally related factors involved in mRNA biogenesis and export. The emerging picture presents THO as a dynamic complex interacting with the nascent RNA and with different factors connecting nuclear functions necessary for mRNP biogenesis with genome integrity, cellular homeostasis and development. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.


Asunto(s)
ARN Mensajero , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Transporte Activo de Núcleo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Humanos , Transporte de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recombinación Genética , Ribonucleoproteínas/biosíntesis , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Biochim Biophys Acta ; 1799(8): 533-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20601280

RESUMEN

Eukaryotic gene expression is a multilayer process covering transcription to post-translational protein modifications. As the nascent pre-mRNA emerges from the RNA polymerase II (RNAPII), it is packed in a messenger ribonucleoparticle (mRNP) whose optimal configuration is critical for the normal pre-mRNA processing and mRNA export, mRNA integrity as well as for transcription elongation efficiency. The interplay between transcription and mRNP formation feeds forward and backward and involves a number of conserved factors, from THO to THSC/TREX-2, which in addition have a unique impact on transcription-dependent genome instability. Here we review our actual knowledge of the role that these factors play at the interface between transcription and mRNA export in the model organism Saccharomyces cerevisiae.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transporte de ARN , Ribonucleoproteínas/metabolismo , Transcripción Genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN , Exodesoxirribonucleasas/genética , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas de Unión al ARN , Ribonucleoproteínas/genética
12.
Elife ; 102021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236317

RESUMEN

DNA double-strand breaks (DSBs) are the most harmful DNA lesions and their repair is crucial for cell viability and genome integrity. The readout of DSB repair may depend on whether DSBs occur at transcribed versus non-transcribed regions. Some studies have postulated that DNA-RNA hybrids form at DSBs to promote recombinational repair, but others have challenged this notion. To directly assess whether hybrids formed at DSBs promote or interfere with the recombinational repair, we have used plasmid and chromosomal-based systems for the analysis of DSB-induced recombination in Saccharomyces cerevisiae. We show that, as expected, DNA-RNA hybrid formation is stimulated at DSBs. In addition, mutations that promote DNA-RNA hybrid accumulation, such as hpr1∆ and rnh1∆ rnh201∆, cause high levels of plasmid loss when DNA breaks are induced at sites that are transcribed. Importantly, we show that high levels or unresolved DNA-RNA hybrids at the breaks interfere with their repair by homologous recombination. This interference is observed for both plasmid and chromosomal recombination and is independent of whether the DSB is generated by endonucleolytic cleavage or by DNA replication. These data support a model in which DNA-RNA hybrids form fortuitously at DNA breaks during transcription and need to be removed to allow recombinational repair, rather than playing a positive role.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN , ARN , Reparación del ADN por Recombinación , 3-Isopropilmalato Deshidrogenasa/genética , 3-Isopropilmalato Deshidrogenasa/metabolismo , Reparación del ADN , Replicación del ADN , Regulación Fúngica de la Expresión Génica , Hibridación de Ácido Nucleico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Microb Cell ; 7(7): 190-198, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32656258

RESUMEN

The stability and function of eukaryotic genomes is closely linked to histones and to chromatin structure. The state of the chromatin not only affects the probability of DNA to undergo damage but also DNA repair. DNA damage can result in genetic alterations and subsequent development of cancer and other genetic diseases. Here, we identified two mutations in conserved residues of histone H3 and histone H4 (H3E73Q and H4E53A) that increase recombinogenic DNA damage. Our results suggest that the accumulation of DNA damage in these histone mutants is largely independent on transcription and might arise as a consequence of problems occurring during DNA replication. This study uncovers the relevance of H3E73 and H4E53 residues in the protection of genome integrity.

14.
DNA Repair (Amst) ; 81: 102660, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31302006

RESUMEN

Transcription is a source of genome instability that stimulates mutation and recombination. Part of the damage produced by transcription is mediated by R-loops, non-B DNA structures that normally form by the re-annealing of the nascent RNA with the template DNA outside the catalytic center of the RNA polymerase, displacing the non-template strand. Recent discoveries have revealed that R-loops might not be harmful by themselves. Instead, chromatin compaction triggered by these structures seems necessary, as deduced from the histone modifications frequently found associated with harmful R-loops. Remarkably, hybrids may also become harmful if stabilized by specific RNA binding proteins, one example of which is the yeast Yra1. We discuss here the possible mechanisms by which cells may stabilize R-loops and the consequences on transcription-replication conflicts and telomere homeostasis.


Asunto(s)
Replicación del ADN , ADN/metabolismo , Inestabilidad Genómica , ARN/metabolismo , Homeostasis del Telómero , Transcripción Genética , Eucariontes/genética , Eucariontes/metabolismo , Proteínas Nucleares/metabolismo , Hibridación de Ácido Nucleico , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-32493765

RESUMEN

Different proteins associate with the nascent RNA and the RNA polymerase (RNAP) to catalyze the transcription cycle and RNA export. If these processes are not properly controlled, the nascent RNA can thread back and hybridize to the DNA template forming R-loops capable of stalling replication, leading to DNA breaks. Given the transcriptional promiscuity of the genome, which leads to large amounts of RNAs from mRNAs to different types of ncRNAs, these can become a major threat to genome integrity if they form R-loops. Consequently, cells have evolved nuclear factors to prevent this phenomenon that includes THO, a conserved eukaryotic complex acting in transcription elongation and RNA processing and export that upon inactivation causes genome instability linked to R-loop accumulation. We revise and discuss here the biological relevance of THO and a number of RNA helicases, including the THO partner UAP56/DDX39B, as a paradigm of the cellular mechanisms of cotranscriptional R-loop prevention.

16.
Cell Rep ; 28(6): 1551-1563.e7, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390568

RESUMEN

THO/TREX is a conserved complex with a role in messenger ribonucleoprotein biogenesis that links gene expression and genome instability. Here, we show that human THO interacts with MFAP1 (microfibrillar-associated protein 1), a spliceosome-associated factor. Interestingly, MFAP1 depletion impairs cell proliferation and genome integrity, increasing γH2AX foci and DNA breaks. This phenotype is not dependent on either transcription or RNA-DNA hybrids. Mutations in the yeast orthologous gene SPP381 cause similar transcription-independent genome instability, supporting a conserved role. MFAP1 depletion has a wide effect on splicing and gene expression in human cells, determined by transcriptome analyses. MFAP1 depletion affects a number of DNA damage response (DDR) genes, which supports an indirect role of MFAP1 on genome integrity. Our work defines a functional interaction between THO and RNA processing and argues that splicing factors may contribute to genome integrity indirectly by regulating the expression of DDR genes rather than by a direct role.


Asunto(s)
Proteínas Contráctiles/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Inestabilidad Genómica , Estructuras R-Loop , Factores de Empalme de ARN/metabolismo , Empalme Alternativo , Ciclo Celular , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
17.
EMBO Rep ; 5(1): 47-53, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14710186

RESUMEN

PAF is a five-subunit protein complex composed of Paf1, Cdc73, Leo1, Rtf1 and Ctr9, which was purified from yeast in association with RNA polymerase II and which is believed to function in transcription elongation. However, no direct proof exists for this yet. To assay whether PAF is required in elongation, we determined the in vitro transcription-elongation efficiencies of mutant cell extracts using a DNA template containing two G-less cassettes. paf1Delta or cdc73Delta cell extracts showed reduced transcription-elongation efficiencies (16-18% of the wild-type levels), whereas leo1Delta and rtf1Delta showed wild-type levels. In vivo transcription efficiency was diminished in the four mutants analysed, as determined by their abilities to transcribe lacZ. Our work provides molecular evidence that PAF has a positive role in transcription elongation and is composed of at least two functionally different types of subunits (Paf1-Cdc73 and Leo1-Rtf1).


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Operón Lac , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/genética , Factores de Transcripción/genética , Factores de Elongación Transcripcional
18.
EMBO J ; 22(3): 612-20, 2003 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-12554661

RESUMEN

We have previously shown that yeast mutants of the THO complex have a defect in gene expression, observed as an impairment of lacZ transcription. Here we analyze the ability of mutants of different transcription elongation factors to transcribe lacZ. We found that spt4Delta, like THO mutants, impaired transcription of lacZ and of long and GC-rich DNA sequences fused to the GAL1 promoter. Using a newly developed in vitro transcription elongation assay, we show that Spt4 is required in elongation. There is a functional interaction between Spt4 and THO, detected by the lethality or strong gene expression defect and hyper-recombination phenotypes of double mutants in the W303 genetic background. Our results indicate that Spt4-Spt5 has a positive role in transcription elongation and suggest that Spt4-Spt5 and THO act at different steps during mRNA biogenesis.


Asunto(s)
Proteínas Cromosómicas no Histona , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Genes Fúngicos , Genes Reporteros , Operón Lac , Sustancias Macromoleculares , Mutación , Proteínas Nucleares/genética , Fenotipo , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética
19.
J Biol Chem ; 278(40): 39037-43, 2003 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-12871933

RESUMEN

THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1delta, tho2delta, and mft1delta mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1delta mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas Fúngicas/genética , Transcripción Genética , Adenosina Trifosfatasas/genética , Transporte Biológico , Northern Blotting , Proteínas Portadoras/genética , ADN Superhelicoidal/metabolismo , Proteínas Fúngicas/fisiología , Cinética , Proteínas Mitocondriales , Modelos Genéticos , Mutación , Proteínas Nucleares/genética , Fenotipo , Plásmidos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Factores de Transcripción/genética
20.
Nature ; 417(6886): 304-8, 2002 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-11979277

RESUMEN

The essential yeast proteins Yra1 and Sub2 are messenger RNA export factors that have conserved counterparts in metazoans, designated Aly and UAP56, respectively. These factors couple the machineries that function in splicing and export of mRNA. Here we show that both Yra1 and Sub2 are stoichiometrically associated with the heterotetrameric THO complex, which functions in transcription in yeast. We also show that Sub2 and Yra1 interact genetically with all four components of the THO complex (Tho2, Hpr1, Mft1 and Thp2). Moreover, these components operate in the export of bulk poly(A)(+) RNA as well as of mRNA derived from intronless genes. Both Aly and UAP56 associate with human counterparts of the THO complex. Together, these data define a conserved complex, designated the TREX ('transcription/export') complex. The TREX complex is specifically recruited to activated genes during transcription and travels the entire length of the gene with RNA polymerase II. Our data indicate that the TREX complex has a conserved role in coupling transcription to mRNA export.


Asunto(s)
Proteínas de Unión al ADN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Transporte Biológico , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada , Epistasis Genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Genes Letales/genética , Humanos , Sustancias Macromoleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA