Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 23(6): 747-754, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38671162

RESUMEN

Oxided-dispersion-strengthened (ODS) alloys are promising high-strength materials used in extreme environments such as high-temperature and radiation tolerance applications. Until now, ODS alloys have been developed for reducible metals by chemical processing methods, but there are no commercially available ODS alloys for unreducible metals, namely, Al, Mg, Ti, Zr and so on, owing to the challenge of uniformly dispersing oxide particles in these alloys by traditional techniques. Here we present a strategy to achieve ODS Al alloys containing highly dispersive 5 nm MgO nanoparticles by powder metallurgy, using nanoparticles that have in situ-grown graphene-like coatings and hence largely reduced surface energy. Notably, the densely dispersed MgO nanoparticles, which have a fully coherent relationship with an Al matrix, show effective suppression of interfacial vacancy diffusion, thus leading to unprecedented strength (~200 MPa) and creep resistance at temperatures as high as 500 °C. Our processing approach should enable the dispersion of ultrafine nanoparticles in a wide range of alloys for high-temperature-related applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA