RESUMEN
AIMS: The neutrophil-lymphocyte ratio (NLR) is a readily available inflammatory biomarker that may associate with atherosclerosis and predict cardiovascular (CV) events. The aims of this study are to determine whether the NLR predicts incident major adverse cardiovascular events (MACE) and is modified by anti-inflammatory therapy. METHODS AND RESULTS: Baseline and on-treatment NLRs were calculated from complete blood counts among 60 087 participants randomized in the CANTOS, JUPITER, SPIRE-1, SPIRE-2, and CIRT trials to receive placebo or canakinumab, rosuvastatin, bococizumab, or methotrexate, respectively, and followed up for MACE. All analyses were performed first in CANTOS, and then externally validated in the other four trials. For the five trials, hazard ratios for major CV events and mortality comparing NLR quartiles were computed using Cox proportional hazards models, and the effect of each randomized intervention on the NLR was evaluated in comparison to placebo. The NLR modestly correlated with interleukin-6, C-reactive protein, and fibrinogen levels but minimally with lipids. In all five randomized trials, baseline NLR predicted incident CV events and death; the per-quartile increase in risk of MACE was 20% in CANTOS [95% confidence interval (CI) 14-25%, P < 0.0001], 31% in SPIRE-1 (95% CI 14-49%, P = 0.00007), 27% in SPIRE-2 (95% CI 12-43%, P = 0.0002), 9% in CIRT (95% CI 0.2-20%, P = 0.045), and 11% in JUPITER (95% CI 1-22%, P = 0.03). While lipid-lowering agents had no significant impact on the NLR, anti-inflammatory therapy with canakinumab lowered the NLR (P < 0.0001). CONCLUSION: The NLR, an easily obtained inflammatory biomarker, independently predicts CV risk and all-cause mortality, and is reduced by interleukin-1ß blockade with canakinumab.
Asunto(s)
Aterosclerosis , Neutrófilos , Anticuerpos Monoclonales , Aterosclerosis/tratamiento farmacológico , Humanos , Linfocitos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.
Asunto(s)
Sitios Genéticos/genética , Inflamación/genética , Redes y Vías Metabólicas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Índice de Masa Corporal , Proteína C-Reactiva/genética , Niño , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Análisis de la Aleatorización Mendeliana/métodos , Persona de Mediana Edad , Esquizofrenia/genética , Esquizofrenia/metabolismo , Adulto JovenRESUMEN
BACKGROUND: Bococizumab, a humanized monoclonal antibody targeting proprotein convertase subtilisin-kexin type 9 (PCSK9), reduces levels of low-density lipoprotein (LDL) cholesterol. However, the variability and durability of this effect are uncertain. METHODS: We conducted six parallel, multinational lipid-lowering trials enrolling 4300 patients with hyperlipidemia who were randomly assigned to receive 150 mg of bococizumab or placebo subcutaneously every 2 weeks and who were followed for up to 12 months; 96% were receiving statin therapy at the time of enrollment. The patients were assessed for lipid changes over time, stratified according to the presence or absence of antidrug antibodies detected during the treatment period. RESULTS: At 12 weeks, patients who received bococizumab had a reduction of 54.2% in the LDL cholesterol level from baseline, as compared with an increase of 1.0% among those who received placebo (absolute between-group difference, -55.2 percentage points). Significant between-group differences were also observed in total cholesterol, non-high-density lipoprotein cholesterol, apolipoprotein B, and lipoprotein(a) (P<0.001 for all comparisons). However, high-titer antidrug antibodies developed in a substantial proportion of the patients who received bococizumab, which markedly diminished the magnitude and durability of the reduction in LDL cholesterol levels. In addition, among patients with no antidrug antibodies, there was wide variability in the reduction in LDL cholesterol levels at both 12 weeks and 52 weeks. Major cardiovascular events occurred in 57 patients (2.5%) who received bococizumab and in 55 (2.7%) who received placebo (hazard ratio, 0.96; 95% confidence interval, 0.66 to 1.39; P=0.83). The most common adverse event among patients who received bococizumab was injection-site reaction (12.7 per 100 person-years). CONCLUSIONS: In six multinational trials evaluating bococizumab, antidrug antibodies developed in a large proportion of the patients and significantly attenuated the lowering of LDL cholesterol levels. Wide variation in the relative reduction in cholesterol levels was also observed among patients in whom antidrug antibodies did not develop. (Funded by Pfizer; SPIRE ClinicalTrials.gov numbers, NCT01968954 , NCT01968967 , NCT01968980 , NCT02100514 , NCT02135029 , and NCT02458287 .).
Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos/sangre , Anticolesterolemiantes/inmunología , LDL-Colesterol/sangre , Hipercolesterolemia/tratamiento farmacológico , Inhibidores de PCSK9 , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticolesterolemiantes/efectos adversos , Anticolesterolemiantes/uso terapéutico , Femenino , Estudios de Seguimiento , Humanos , Hipercolesterolemia/inmunología , Inyecciones Subcutáneas/efectos adversos , Lípidos/sangre , Masculino , Persona de Mediana Edad , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/inmunología , Resultado del TratamientoRESUMEN
Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10-6) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
Asunto(s)
Envejecimiento/genética , Cardiopatías/genética , Nutrientes , Anciano , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Estudios de Cohortes , Ingestión de Energía/genética , Femenino , Factores de Crecimiento de Fibroblastos/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Genotipo , Cardiopatías/epidemiología , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Obesidad/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Ácido Retinoico/genética , Población Blanca/genéticaRESUMEN
Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman's ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman's ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann-Whitney = 1.46×10-5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10-9 and 8.52×10-7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them.
Asunto(s)
HDL-Colesterol/genética , LDL-Colesterol/genética , Interacción Gen-Ambiente , Obesidad/genética , Índice de Masa Corporal , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Femenino , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Obesidad/sangre , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo , Fumar/genética , Población Blanca/genéticaRESUMEN
BACKGROUND: The combination of statin therapy and PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibition markedly lowers low-density lipoprotein cholesterol (LDL-C) and reduces cardiovascular event rates. Whether residual inflammatory risk as measured by on-treatment high sensitivity C-reactive protein (hsCRP) remains an important clinical issue in such patients is uncertain. METHODS: We evaluated residual inflammatory risk among 9738 patients participating in the SPIRE-1 and SPIRE-2 cardiovascular outcomes trials (Studies of PCSK9 Inhibition and the Reduction in Vascular Events), who were receiving both statin therapy and bococizumab, according to on-treatment levels of hsCRP (hsCRPOT) and LDL-COT measured 14 weeks after drug initiation. The primary end point was nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina requiring urgent revascularization, or cardiovascular death. RESULTS: At 14 weeks, the mean percentage change in LDL-C among statin-treated patients who additionally received bococizumab was -60.5% (95% confidence interval [CI], -61.2 to -59.8; P<0.001; median change, -65.4%) as compared to 6.6% (95% CI, -1.0 to 14.1; P=0.09; median change, 0.0%) for hsCRP. Incidence rates for future cardiovascular events for patients treated with both statin therapy and bococizumab according to hsCRPOT <1, 1 to 3, and >3 mg/L were 1.96, 2.50, and 3.59 events per 100 person-years, respectively, corresponding to multivariable adjusted hazard ratios of 1.0, 1.16 (95% CI, 0.81-1.66), and 1.62 (95% CI, 1.14-2.30) (P-trend=0.001) after adjustment for traditional cardiovascular risk factors and LDL-COT. Comparable adjusted hazard ratios for LDL-COT (<30, 30-50, >50 mg/dL) were 1.0, 0.87, and 1.21, respectively (P-trend=0.16). Relative risk reductions with bococizumab were similar across hsCRPOT groups (P-interaction=0.87). CONCLUSIONS: In this post hoc analysis of the SPIRE trials of bococizumab in a stable outpatient population, evidence of residual inflammatory risk persisted among patients treated with both statin therapy and proprotein convertase subtilisin-kexin type 9 inhibition. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT01975376, NCT01975389.
Asunto(s)
Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Proteína C-Reactiva/metabolismo , Enfermedades Cardiovasculares/prevención & control , LDL-Colesterol/sangre , Dislipidemias/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inhibidores de PCSK9 , Inhibidores de Serina Proteinasa/uso terapéutico , Anciano , Antiinflamatorios/efectos adversos , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticolesterolemiantes/efectos adversos , Biomarcadores/sangre , Enfermedades Cardiovasculares/etiología , Método Doble Ciego , Quimioterapia Combinada , Dislipidemias/sangre , Dislipidemias/complicaciones , Dislipidemias/enzimología , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inflamación/sangre , Inflamación/complicaciones , Inflamación/enzimología , Masculino , Persona de Mediana Edad , Proproteína Convertasa 9/metabolismo , Medición de Riesgo , Factores de Riesgo , Inhibidores de Serina Proteinasa/efectos adversos , Factores de Tiempo , Resultado del TratamientoRESUMEN
BACKGROUND: Observational studies have identified an association between body mass index (BMI) and incident atrial fibrillation (AF). Inferring causality from observational studies, however, is subject to residual confounding, reverse causation, and bias. The primary objective of this study was to evaluate the causal association between BMI and AF by using genetic predictors of BMI. METHODS: We identified 51 646 individuals of European ancestry without AF at baseline from 7 prospective population-based cohorts initiated between 1987 and 2002 in the United States, Iceland, and the Netherlands with incident AF ascertained between 1987 and 2012. Cohort-specific mean follow-up ranged from 7.4 to 19.2 years, over which period there was a total of 4178 cases of incident AF. We performed a Mendelian randomization with instrumental variable analysis to estimate a cohort-specific causal hazard ratio for the association between BMI and AF. Two genetic instruments for BMI were used: FTO genotype (rs1558902) and a BMI gene score comprising 39 single-nucleotide polymorphisms identified by genome-wide association studies to be associated with BMI. Cohort-specific estimates were combined by random-effects, inverse variance-weighted meta-analysis. RESULTS: In age- and sex-adjusted meta-analysis, both genetic instruments were significantly associated with BMI (FTO: 0.43 [95% confidence interval, 0.32-0.54] kg/m2 per A-allele, P<0.001; BMI gene score: 1.05 [95% confidence interval, 0.90-1.20] kg/m2 per 1-U increase, P<0.001) and incident AF (FTO, hazard ratio, 1.07 [1.02-1.11] per A-allele, P=0.004; BMI gene score, hazard ratio, 1.11 [1.05-1.18] per 1-U increase, P<0.001). Age- and sex-adjusted instrumental variable estimates for the causal association between BMI and incident AF were hazard ratio, 1.15 (1.04-1.26) per kg/m2, P=0.005 (FTO) and 1.11 (1.05-1.17) per kg/m2, P<0.001 (BMI gene score). Both of these estimates were consistent with the meta-analyzed estimate between observed BMI and AF (age- and sex-adjusted hazard ratio 1.05 [1.04-1.06] per kg/m2, P<0.001). Multivariable adjustment did not significantly change findings. CONCLUSIONS: Our data are consistent with a causal relationship between BMI and incident AF. These data support the possibility that public health initiatives targeting primordial prevention of obesity may reduce the incidence of AF.
Asunto(s)
Fibrilación Atrial/etiología , Obesidad/genética , Anciano , Alelos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Fibrilación Atrial/epidemiología , Índice de Masa Corporal , Estudios de Cohortes , Femenino , Genotipo , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Obesidad/patología , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Distribución Aleatoria , Factores de RiesgoRESUMEN
Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including â¼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.
Asunto(s)
Fibrinógeno/análisis , Sitios Genéticos , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Fibrinógeno/genética , Estudio de Asociación del Genoma Completo , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Población Blanca/genéticaRESUMEN
Venous thromboembolism (VTE), the third leading cause of cardiovascular mortality, is a complex thrombotic disorder with environmental and genetic determinants. Although several genetic variants have been found associated with VTE, they explain a minor proportion of VTE risk in cases. We undertook a meta-analysis of genome-wide association studies (GWASs) to identify additional VTE susceptibility genes. Twelve GWASs totaling 7,507 VTE case subjects and 52,632 control subjects formed our discovery stage where 6,751,884 SNPs were tested for association with VTE. Nine loci reached the genome-wide significance level of 5 × 10(-8) including six already known to associate with VTE (ABO, F2, F5, F11, FGG, and PROCR) and three unsuspected loci. SNPs mapping to these latter were selected for replication in three independent case-control studies totaling 3,009 VTE-affected individuals and 2,586 control subjects. This strategy led to the identification and replication of two VTE-associated loci, TSPAN15 and SLC44A2, with lead risk alleles associated with odds ratio for disease of 1.31 (p = 1.67 × 10(-16)) and 1.21 (p = 2.75 × 10(-15)), respectively. The lead SNP at the TSPAN15 locus is the intronic rs78707713 and the lead SLC44A2 SNP is the non-synonymous rs2288904 previously shown to associate with transfusion-related acute lung injury. We further showed that these two variants did not associate with known hemostatic plasma markers. TSPAN15 and SLC44A2 do not belong to conventional pathways for thrombosis and have not been associated to other cardiovascular diseases nor related quantitative biomarkers. Our findings uncovered unexpected actors of VTE etiology and pave the way for novel mechanistic concepts of VTE pathophysiology.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Tetraspaninas/genética , Tromboembolia Venosa/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Oportunidad RelativaRESUMEN
There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using â¼170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of â¼0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
Asunto(s)
Índice de Masa Corporal , Variación Genética , Fenotipo , Proteínas/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Estatura/genética , Proteínas Co-Represoras , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genéticaRESUMEN
BACKGROUND: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes. METHODS & FINDINGS: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 × 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI 0.55-0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants. CONCLUSIONS: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.
Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/genética , Diabetes Mellitus Tipo 2/epidemiología , Hemoglobina Glucada/metabolismo , Humanos , Fenotipo , RiesgoRESUMEN
Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.
Asunto(s)
Presión Sanguínea/genética , Sitios de Carácter Cuantitativo , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Fenotipo , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND & AIMS: A genome-wide association study (GWAS) of 280 cases identified the hepatic cholesterol transporter ABCG8 as a locus associated with risk for gallstone disease, but findings have not been reported from any other GWAS of this phenotype. We performed a large-scale, meta-analysis of GWASs of individuals of European ancestry with available prior genotype data, to identify additional genetic risk factors for gallstone disease. METHODS: We obtained per-allele odds ratio (OR) and standard error estimates using age- and sex-adjusted logistic regression models within each of the 10 discovery studies (8720 cases and 55,152 controls). We performed an inverse variance weighted, fixed-effects meta-analysis of study-specific estimates to identify single-nucleotide polymorphisms that were associated independently with gallstone disease. Associations were replicated in 6489 cases and 62,797 controls. RESULTS: We observed independent associations for 2 single-nucleotide polymorphisms at the ABCG8 locus: rs11887534 (OR, 1.69; 95% confidence interval [CI], 1.54-1.86; P = 2.44 × 10(-60)) and rs4245791 (OR, 1.27; P = 1.90 × 10(-34)). We also identified and/or replicated associations for rs9843304 in TM4SF4 (OR, 1.12; 95% CI, 1.08-1.16; P = 6.09 × 10(-11)), rs2547231 in SULT2A1 (encodes a sulfoconjugation enzyme that acts on hydroxysteroids and cholesterol-derived sterol bile acids) (OR, 1.17; 95% CI, 1.12-1.21; P = 2.24 × 10(-10)), rs1260326 in glucokinase regulatory protein (OR, 1.12; 95% CI, 1.07-1.17; P = 2.55 × 10(-10)), and rs6471717 near CYP7A1 (encodes an enzyme that catalyzes conversion of cholesterol to primary bile acids) (OR, 1.11; 95% CI, 1.08-1.15; P = 8.84 × 10(-9)). Among individuals of African American and Hispanic American ancestry, rs11887534 and rs4245791 were associated positively with gallstone disease risk, whereas the association for the rs1260326 variant was inverse. CONCLUSIONS: In this large-scale GWAS of gallstone disease, we identified 4 loci in genes that have putative functions in cholesterol metabolism and transport, and sulfonylation of bile acids or hydroxysteroids.
Asunto(s)
Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Cálculos Biliares/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Adulto , Negro o Afroamericano/genética , Anciano , Estudios de Casos y Controles , Colesterol/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Humanos , Metabolismo de los Lípidos/genética , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Fenotipo , Polimorfismo de Nucleótido Simple , Población Blanca/genéticaRESUMEN
Fibrinogen, coagulation factor VII (FVII), and factor VIII (FVIII) and its carrier von Willebrand factor (vWF) play key roles in hemostasis. Previously identified common variants explain only a small fraction of the trait heritabilities, and additional variations may be explained by associations with rarer variants with larger effects. The aim of this study was to identify low-frequency (minor allele frequency [MAF] ≥0.01 and <0.05) and rare (MAF <0.01) variants that influence plasma concentrations of these 4 hemostatic factors by meta-analyzing exome chip data from up to 76,000 participants of 4 ancestries. We identified 12 novel associations of low-frequency (n = 2) and rare (n = 10) variants across the fibrinogen, FVII, FVIII, and vWF traits that were independent of previously identified associations. Novel loci were found within previously reported genes and had effect sizes much larger than and independent of previously identified common variants. In addition, associations at KCNT1, HID1, and KATNB1 identified new candidate genes related to hemostasis for follow-up replication and functional genomic analysis. Newly identified low-frequency and rare-variant associations accounted for modest amounts of trait variance and therefore are unlikely to increase predicted trait heritability but provide new information for understanding individual variation in hemostasis pathways.
Asunto(s)
Factor VIII/genética , Factor VIII/metabolismo , Factor VII/genética , Factor VII/metabolismo , Fibrinógeno/genética , Fibrinógeno/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Estudios de Cohortes , Frecuencia de los Genes , Estudios de Asociación Genética , Variación Genética , Humanos , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Canales de Potasio/genética , Canales de potasio activados por SodioRESUMEN
Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91,462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10(-8)).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.
Asunto(s)
Coffea/metabolismo , Conducta Alimentaria , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Citocromo P-450 CYP1A2/genética , Humanos , FenotipoRESUMEN
Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction â=â0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (nâ=â39,810, Pinteraction â=â0.014 vs. nâ=â71,611, Pinteraction â=â0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction â=â0.003) and the SEC16B rs10913469 (Pinteraction â=â0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Actividad Motora/genética , Obesidad/genética , Adulto , Alelos , Índice de Masa Corporal , Femenino , Humanos , Modelos Logísticos , Masculino , Obesidad/epidemiología , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Encuestas y Cuestionarios , Población Blanca/genéticaRESUMEN
Dietary intake of macronutrients (carbohydrate, protein, and fat) has been associated with risk of chronic conditions such as obesity and diabetes. Family studies have reported a moderate contribution of genetics to variation in macronutrient intake. In a genome-wide meta-analysis of a population-based discovery cohort (n = 33 533), rs838133 in FGF21 (19q13.33), rs197273 near TRAF family member-associated NF-kappa-B activator (TANK) (2p24.2), and rs10163409 in FTO (16q12.2) were among the top associations (P < 10(-5)) for percentage of total caloric intake from protein and carbohydrate. rs838133 was replicated in silico in an independent sample from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE) Nutrition Working Group (n = 38 360) and attained genome-wide significance in combined analysis (Pjoint = 7.9 × 10(-9)). A cytokine involved in cellular metabolism, FGF21 is a potential susceptibility gene for obesity and type 2 diabetes. Our results highlight the potential of genetic variation for determining dietary macronutrient intake.
Asunto(s)
Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Fibras de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Factores de Crecimiento de Fibroblastos/genética , Sitios Genéticos , Índice de Masa Corporal , Estudios de Cohortes , Diabetes Mellitus Tipo 2/genética , Ingestión de Energía , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Modelos Lineales , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Obesidad/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for â¼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smoking.
Asunto(s)
Estudio de Asociación del Genoma Completo , Menopausia Prematura/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Humanos , Insuficiencia Ovárica Primaria/genética , Sitios de Carácter Cuantitativo , RiesgoRESUMEN
We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4 × 10(-19)), near AHR, and 15q24 (P = 5.2 × 10(-14)), between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2.
Asunto(s)
Cafeína , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 7/genética , Citocromo P-450 CYP1A2 , Conducta de Ingestión de Líquido/fisiología , Estudio de Asociación del Genoma Completo , Adulto , Anciano , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Control de Calidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factores Sexuales , Estados Unidos , Población Blanca/genéticaRESUMEN
BACKGROUND: C-reactive protein (CRP) is a heritable marker of chronic inflammation that is strongly associated with cardiovascular disease. We sought to identify genetic variants that are associated with CRP levels. METHODS AND RESULTS: We performed a genome-wide association analysis of CRP in 66 185 participants from 15 population-based studies. We sought replication for the genome-wide significant and suggestive loci in a replication panel comprising 16 540 individuals from 10 independent studies. We found 18 genome-wide significant loci, and we provided evidence of replication for 8 of them. Our results confirm 7 previously known loci and introduce 11 novel loci that are implicated in pathways related to the metabolic syndrome (APOC1, HNF1A, LEPR, GCKR, HNF4A, and PTPN2) or the immune system (CRP, IL6R, NLRP3, IL1F10, and IRF1) or that reside in regions previously not known to play a role in chronic inflammation (PPP1R3B, SALL1, PABPC4, ASCL1, RORA, and BCL7B). We found a significant interaction of body mass index with LEPR (P<2.9×10(-6)). A weighted genetic risk score that was developed to summarize the effect of risk alleles was strongly associated with CRP levels and explained ≈5% of the trait variance; however, there was no evidence for these genetic variants explaining the association of CRP with coronary heart disease. CONCLUSIONS: We identified 18 loci that were associated with CRP levels. Our study highlights immune response and metabolic regulatory pathways involved in the regulation of chronic inflammation.