Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 325(2): H264-H277, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389950

RESUMEN

Clinical studies suggest low testosterone levels are associated with cardiac arrhythmias, especially in later life. We investigated whether chronic exposure to low circulating testosterone promoted maladaptive electrical remodeling in ventricular myocytes from aging male mice and determined the role of late inward sodium current (INa,L) in this remodeling. C57BL/6 mice had a gonadectomy (GDX) or sham surgery (1 mo) and were aged to 22-28 mo. Ventricular myocytes were isolated; transmembrane voltage and currents were recorded (37°C). Action potential duration at 70 and 90% repolarization (APD70 and APD90) was prolonged in GDX compared with sham myocytes (APD90, 96.9 ± 3.2 vs. 55.4 ± 2.0 ms; P < 0.001). INa,L was also larger in GDX than sham (-2.4 ± 0.4 vs. -1.2 ± 0.2 pA/pF; P = 0.002). When cells were exposed to the INa,L antagonist ranolazine (10 µM), INa,L declined in GDX cells (-1.9 ± 0.5 vs. -0.4 ± 0.2 pA/pF; P < 0.001) and APD90 was reduced (96.3 ± 14.8 vs. 49.2 ± 9.4 ms; P = 0.001). GDX cells had more triggered activity (early/delayed afterdepolarizations, EADs/DADs) and spontaneous activity than sham. EADs were inhibited by ranolazine in GDX cells. The selective NaV1.8 blocker A-803467 (30 nM) also reduced INa,L, decreased APD and abolished triggered activity in GDX cells. Scn5a (NaV1.5) and Scn10a (NaV1.8) mRNA was increased in GDX ventricles, but only NaV1.8 protein abundance was increased in GDX compared with sham. In vivo studies showed QT prolongation and more arrhythmias in GDX mice. Thus, triggered activity in ventricular myocytes from aging male mice with long-term testosterone deficiency arises from APD prolongation mediated by larger NaV1.8- and NaV1.5-associated currents, which may explain the increase in arrhythmias.NEW & NOTEWORTHY Older men with low testosterone levels are at increased risk of developing cardiac arrhythmias. We found aged mice chronically exposed to low testosterone had more arrhythmias and ventricular myocytes had prolonged repolarization, abnormal electrical activity, larger late sodium currents, and increased expression of NaV1.8 sodium channels. Drugs that inhibit late sodium current or NaV1.8 channels abolished abnormal electrical activity and shortened repolarization. This suggests the late sodium current may be a novel target to treat arrhythmias in older testosterone-deficient men.


Asunto(s)
Sodio , Testosterona , Ratones , Masculino , Animales , Ranolazina/farmacología , Ranolazina/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Sodio/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas , Canales de Sodio/metabolismo , Potenciales de Acción , Envejecimiento
2.
Proc Natl Acad Sci U S A ; 117(14): 7990-8000, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198206

RESUMEN

Atrial fibrillation (AF) is prevalent in diabetes mellitus (DM); however, the basis for this is unknown. This study investigated AF susceptibility and atrial electrophysiology in type 1 diabetic Akita mice using in vivo intracardiac electrophysiology, high-resolution optical mapping in atrial preparations, and patch clamping in isolated atrial myocytes. qPCR and western blotting were used to assess ion channel expression. Akita mice were highly susceptible to AF in association with increased P-wave duration and slowed atrial conduction velocity. In a second model of type 1 DM, mice treated with streptozotocin (STZ) showed a similar increase in susceptibility to AF. Chronic insulin treatment reduced susceptibility and duration of AF and shortened P-wave duration in Akita mice. Atrial action potential (AP) morphology was altered in Akita mice due to a reduction in upstroke velocity and increases in AP duration. In Akita mice, atrial Na+ current (INa) and repolarizing K+ current (IK) carried by voltage gated K+ (Kv1.5) channels were reduced. The reduction in INa occurred in association with reduced expression of SCN5a and voltage gated Na+ (NaV1.5) channels as well as a shift in INa activation kinetics. Insulin potently and selectively increased INa in Akita mice without affecting IK Chronic insulin treatment increased INa in association with increased expression of NaV1.5. Acute insulin also increased INa, although to a smaller extent, due to enhanced insulin signaling via phosphatidylinositol 3,4,5-triphosphate (PIP3). Our study reveals a critical, selective role for insulin in regulating atrial INa, which impacts susceptibility to AF in type 1 DM.


Asunto(s)
Fibrilación Atrial/metabolismo , Remodelación Atrial/fisiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Insulina/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Fibrilación Atrial/fisiopatología , Remodelación Atrial/inmunología , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Insulina/administración & dosificación , Insulina/genética , Canal de Potasio Kv1.5/metabolismo , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Cultivo Primario de Células , Sodio/metabolismo , Estreptozocina/toxicidad
3.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36269644

RESUMEN

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Asunto(s)
Enfermedades Cardiovasculares , Células Madre Pluripotentes Inducidas , Animales , Humanos , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas/etiología , Miocitos Cardíacos
4.
Am J Physiol Heart Circ Physiol ; 316(4): H768-H780, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657724

RESUMEN

The impact of long-term gonadectomy (GDX) on cardiac contractile function was explored in the setting of aging. Male mice were subjected to bilateral GDX or sham operation (4 wk) and investigated at 16-18 mo of age. Ventricular myocytes were field stimulated (2 Hz, 37°C). Peak Ca2+ transients (fura 2) and contractions were similar in GDX and sham-operated mice, although Ca2+ transients (50% decay time: 45.2 ± 2.3 vs. 55.6 ± 3.1 ms, P < 0.05) and contractions (time constant of relaxation: 39.1 ± 3.2 vs. 69.5 ± 9.3 ms, P < 0.05) were prolonged in GDX mice. Action potential duration was increased in myocytes from GDX mice, but this did not account for prolonged responses, as Ca2+ transient decay was slow even when cells from GDX mice were voltage clamped with simulated "sham" action potentials. Western blots of proteins involved in Ca2+ sequestration and efflux showed that Na+/Ca2+ exchanger and sarco(endo)plasmic reticulum Ca2+-ATPase type 2 protein levels were unaffected, whereas phospholamban was dramatically higher in ventricles from aging GDX mice (0.24 ± 0.02 vs. 0.86 ± 0.13, P < 0.05). Myofilament Ca2+ sensitivity at physiological Ca2+ was similar, but phosphorylation of essential myosin light chain 1 was reduced by ≈50% in ventricles from aging GDX mice. M-mode echocardiography showed no change in systolic function (e.g., ejection fraction). Critically, pulse-wave Doppler echocardiography showed that GDX slowed isovolumic relaxation time (12.9 ± 0.9 vs. 16.9 ± 1.0 ms, P < 0.05), indicative of diastolic dysfunction. Thus, dysregulation of intracellular Ca2+ and myofilament dysfunction contribute to deficits in contraction in hearts from testosterone-deficient aging mice. This suggests that low testosterone helps promote diastolic dysfunction in the aging heart. NEW & NOTEWORTHY The influence of long-term gonadectomy on contractile function was examined in aging male hearts. Gonadectomy slowed the decay of Ca2+ transients and contractions in ventricular myocytes and slowed isovolumic relaxation time, demonstrating diastolic dysfunction. Underlying mechanisms included Ca2+ dysregulation, elevated phospholamban protein levels, and hypophosphorylation of a myofilament protein, essential myosin light chain. Testosterone deficiency led to intracellular Ca2+ dysregulation and myofilament dysfunction, which may facilitate diastolic dysfunction in the setting of aging.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Corazón/fisiología , Miofibrillas/metabolismo , Testosterona/deficiencia , Potenciales de Acción/fisiología , Envejecimiento/fisiología , Animales , Señalización del Calcio/fisiología , ATPasas Transportadoras de Calcio/metabolismo , Diástole/fisiología , Ecocardiografía , Corazón/diagnóstico por imagen , Ventrículos Cardíacos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Orquiectomía , Testosterona/sangre
5.
J Mol Cell Cardiol ; 124: 12-25, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30273558

RESUMEN

Atrial fibrillation (AF) is prevalent in hypertension and elevated angiotensin II (Ang II); however, the mechanisms by which Ang II leads to AF are poorly understood. Here, we investigated the basis for this in mice treated with Ang II or saline for 3 weeks. Ang II treatment increased susceptibility to AF compared to saline controls in association with increases in P wave duration and atrial effective refractory period, as well as reductions in right and left atrial conduction velocity. Patch-clamp studies demonstrate that action potential (AP) duration was prolonged in right atrial myocytes from Ang II treated mice in association with a reduction in repolarizing K+ currents. In contrast, APs in left atrial myocytes from Ang II treated mice showed reductions in upstroke velocity and overshoot, as well as greater prolongations in AP duration. Ang II reduced Na+ current (INa) in the left, but not the right atrium. This reduction in INa was reversible following inhibition of protein kinase C (PKC) and PKCα expression was increased selectively in the left atrium in Ang II treated mice. The transient outward K+ current (Ito) showed larger reductions in the left atrium in association with a shift in the voltage dependence of activation. Finally, Ang II caused fibrosis throughout the atria in association with changes in collagen expression and regulators of the extracellular matrix. This study demonstrates that hypertension and elevated Ang II cause distinct patterns of electrical and structural remodeling in the right and left atria that collectively create a substrate for AF.


Asunto(s)
Potenciales de Acción , Angiotensina II/metabolismo , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Remodelación Atrial , Angiotensina II/farmacología , Animales , Biomarcadores , Presión Sanguínea , Ecocardiografía , Electrocardiografía , Inmunohistoquímica , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo
6.
J Mol Cell Cardiol ; 111: 51-60, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28778766

RESUMEN

Ovariectomy (OVX) promotes sarcoplasmic reticulum (SR) Ca2+ overload in ventricular myocytes. We hypothesized that the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway contributes to this Ca2+ dysregulation. Myocytes were isolated from adult female C57BL/6 mice following either OVX or sham surgery (surgery at ≈1mos). Contractions, Ca2+ concentrations (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in voltage-clamped myocytes. Intracellular cAMP levels were determined with an enzyme immunoassay; phosphodiesterase (PDE) and adenylyl cyclase (AC) isoform expression was examined with qPCR. Ca2+ currents were similar in myocytes from sham and OVX mice but Ca2+ transients, excitation-contraction (EC)-coupling gain, SR content and contractions were larger in OVX than sham cells. To determine if the cAMP/PKA pathway mediated OVX-induced alterations in EC-coupling, cardiomyocytes were incubated with the PKA inhibitor H-89 (2µM), which abolished baseline differences. While basal intracellular cAMP did not differ, levels were higher in OVX than sham in the presence of a non-selective PDE inhibitor (300µM IBMX), or an AC activator (10µM forskolin). This suggests the production of cAMP by AC and its breakdown by PDE were enhanced by OVX. Consistent with this, mRNA levels for both AC5 and PDE4A were higher in OVX in comparison to sham. Differences in Ca2+ homeostasis and contractions were abolished when sham and OVX cells were dialyzed with patch pipettes containing the same concentration of 8-bromoadenosine-cAMP (50µM). Interestingly, selective inhibition of PDE4 increased Ca2+ current only in OVX cells. Together, these findings suggest that estrogen suppresses SR Ca2+ release and that this is regulated, at least in part, by the cAMP/PKA pathway. These changes in the cAMP/PKA pathway may promote Ca2+ dysregulation and cardiovascular disease when ovarian estrogen levels fall. These results advance our understanding of female-specific cardiomyocyte mechanisms that may affect responses to therapeutic interventions in older women.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Acoplamiento Excitación-Contracción , Miocardio/metabolismo , Ovariectomía , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Adenilil Ciclasas/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Acoplamiento Excitación-Contracción/efectos de los fármacos , Femenino , Isoquinolinas/farmacología , Ratones Endogámicos C57BL , Modelos Biológicos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Tamaño de los Órganos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Rolipram/farmacología , Retículo Sarcoplasmático/metabolismo , Sulfonamidas/farmacología
7.
J Physiol ; 594(23): 7105-7126, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27598221

RESUMEN

KEY POINTS: Sinoatrial node (SAN) function declines with age; however, not all individuals age at the same rate and health status can vary from fit to frail. Frailty was quantified in young and aged mice using a non-invasive frailty index so that the impacts of age and frailty on heart rate and SAN function could be assessed. SAN function was impaired in aged mice due to alterations in electrical conduction, changes in SAN action potential morphology and fibrosis in the SAN. Changes in SAN function, electrical conduction, action potential morphology and fibrosis were correlated with, and graded by, frailty. This study shows that mice of the same chronological age have quantifiable differences in health status that impact heart rate and SAN function and that these differences in health status can be identified using our frailty index. ABSTRACT: Sinoatrial node (SAN) dysfunction increases with age, although not all older adults are affected in the same way. This is because people age at different rates and individuals of the same chronological age vary in health status from very fit to very frail. Our objective was to determine the impacts of age and frailty on heart rate (HR) and SAN function using a new model of frailty in ageing mice. Frailty, which was quantified in young and aged mice using a frailty index (FI), was greater in aged vs. young mice. Intracardiac electrophysiology demonstrated that HR was reduced whereas SAN recovery time (SNRT) was prolonged in aged mice; however, both parameters showed heteroscedasticity suggesting differences in health status among mice of similar chronological age. Consistent with this, HR and corrected SNRT were correlated with, and graded by, FI score. Optical mapping of the SAN demonstrated that conduction velocity (CV) was reduced in aged hearts in association with reductions in diastolic depolarization (DD) slope and action potential (AP) duration. In agreement with in vivo results, SAN CV, DD slope and AP durations all correlated with FI score. Finally, SAN dysfunction in aged mice was associated with increased interstitial fibrosis and alterations in expression of matrix metalloproteinases, which also correlated with frailty. These findings demonstrate that age-related SAN dysfunction occurs in association with electrical and structural remodelling and that frailty is a critical determinant of health status of similarly aged animals that correlates with changes in HR and SAN function.


Asunto(s)
Envejecimiento/fisiología , Nodo Sinoatrial/fisiología , Potenciales de Acción , Animales , Fibrosis , Frecuencia Cardíaca , Masculino , Ratones Endogámicos C57BL , Nodo Sinoatrial/patología
8.
J Mol Cell Cardiol ; 82: 125-35, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25754673

RESUMEN

Cardiovascular autonomic neuropathy (CAN) is a serious complication of diabetes mellitus that impairs autonomic regulation of heart rate (HR). This has been attributed to damage to the nerves that modulate spontaneous pacemaker activity in the sinoatrial node (SAN). Our objective was to test the hypothesis that impaired parasympathetic regulation of HR in diabetes is due to reduced responsiveness of the SAN to parasympathetic agonists. We used the Akita mouse model of type 1 diabetes to study the effects of the parasympathetic agonist carbachol (CCh) on SAN function using intracardiac programmed stimulation, high resolution optical mapping and patch-clamping of SAN myocytes. CCh decreased HR by 30% and increased corrected SAN recovery time (cSNRT) by 123% in wildtype mice. In contrast, CCh only decreased HR by 12%, and only increased cSNRT by 37% in Akita mice. These alterations were due to smaller effects of CCh on SAN electrical conduction and spontaneous action potential firing in isolated SAN myocytes. Voltage clamp experiments demonstrate that the acetylcholine-activated K(+) current (IKACh) is reduced in Akita SAN myocytes due to enhanced desensitization and faster deactivation kinetics. These IKACh alterations were normalized by treating Akita SAN myocytes with PI(3,4,5)P3 or an inhibitor of regulator of G-protein signaling 4 (RGS4). There was no difference in the effects of CCh on the hyperpolarization-activated current (If) between wildtype and Akita mice. Our study demonstrates that Akita diabetic mice demonstrate impaired parasympathetic regulation of HR and SAN function due to reduced responses of the SAN to parasympathetic agonists. Our experiments demonstrate a key role for insulin-dependent phosphoinositide 3-kinase (PI3K) signaling in the parasympathetic dysfunction seen in the SAN in diabetes.


Asunto(s)
Sistema Nervioso Parasimpático/fisiopatología , Nodo Sinoatrial/inervación , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Carbacol/farmacología , Cardiotónicos/farmacología , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/fisiopatología , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insulina/administración & dosificación , Insulina/farmacología , Ratones , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas RGS/antagonistas & inhibidores , Proteínas RGS/metabolismo , Nodo Sinoatrial/efectos de los fármacos
9.
J Physiol ; 593(5): 1127-46, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25641115

RESUMEN

Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C(+/+)) and NPR-C knockout (NPR-C(-/-)) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C(-/-) mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C(+/+) vs. 47% in NPR-C(-/-)). There were no differences in SAN or atrial action potential morphology in NPR-C(-/-) mice; however, increased atrial arrhythmogenesis in NPR-C(-/-) mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C(-/-) mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.


Asunto(s)
Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Receptores del Factor Natriurético Atrial/genética , Nodo Sinoatrial/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Colágeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Receptores del Factor Natriurético Atrial/metabolismo , Nodo Sinoatrial/fisiopatología
10.
Conserv Biol ; 29(2): 350-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25319024

RESUMEN

In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Tecnología de Sensores Remotos/instrumentación
11.
J Mol Cell Cardiol ; 75: 162-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25066697

RESUMEN

Previous studies have shown that ventricular myocytes from female rats have smaller contractions and Ca(2+) transients than males. As cardiac contraction is regulated by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway, we hypothesized that sex differences in cAMP contribute to differences in Ca(2+) handling. Ca(2+) transients (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in ventricular myocytes from adult male and female C57BL/6 mice. Under basal conditions, diastolic Ca(2+), sarcoplasmic reticulum (SR) Ca(2+) stores, and L-type Ca(2+) current did not differ between the sexes. However, female myocytes had smaller Ca(2+) transients (26% smaller), Ca(2+) sparks (6% smaller), and excitation-contraction coupling gain in comparison to males (23% smaller). Interestingly, basal levels of intracellular cAMP were lower in female myocytes (0.7±0.1 vs. 1.7±0.2fmol/µg protein; p<0.001). Importantly, PKA inhibition (2µM H-89) eliminated male-female differences in Ca(2+) transients and gain, as well as Ca(2+) spark amplitude. Western blots showed that PKA inhibition also reduced the ratio of phospho:total RyR2 in male hearts, but not in female hearts. Stimulation of cAMP production with 10µM forskolin abolished sex differences in cAMP levels, as well as differences in Ca(2+) transients, sparks, and gain. To determine if the breakdown of cAMP differed between the sexes, phosphodiesterase (PDE) mRNA levels were measured. PDE3 expression was similar in males and females, but PDE4B expression was higher in female ventricles. The inhibition of cAMP breakdown by PDE4 (10µM rolipram) abolished differences in Ca(2+) transients and gain. These findings suggest that female myocytes have lower levels of basal cAMP due, in part, to higher expression of PDE4B. Lower cAMP levels in females may attenuate PKA phosphorylation of Ca(2+) handling proteins in females, and may limit positive inotropic responses to stimulation of the cAMP/PKA pathway in female hearts.


Asunto(s)
Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Ventrículos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Caracteres Sexuales , Transducción de Señal , Adenilil Ciclasas/metabolismo , Animales , Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diástole , Activación Enzimática , Acoplamiento Excitación-Contracción , Femenino , Espacio Intracelular/metabolismo , Activación del Canal Iónico , Masculino , Ratones Endogámicos C57BL , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
12.
J Physiol ; 592(5): 1025-45, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24344164

RESUMEN

Natriuretic peptides, including B-type and C-type natriuretic peptide (BNP and CNP), are powerful regulators of the cardiovascular system; however, their electrophysiological effects in the heart, particularly in the sinoatrial node (SAN), are incompletely understood. We have used high-resolution optical mapping to measure the effects of BNP and CNP, and the roles of natriuretic peptide receptors (NPR-A, NPR-B and NPR-C), on electrical conduction within the SAN and atrial myocardium. In basal conditions BNP and CNP (50-500 nm) increased conduction velocity (CV) within the SAN by ∼30% at the high dose and shifted the initial exit site superiorly. These effects sped conduction from the SAN to the surrounding atrial myocardium and were mediated by the NPR-A and NPR-B receptors. In the presence of isoproterenol (1 µm) the NPR-C receptor made a major contribution to the effects of BNP and CNP in the heart. In these conditions BNP, CNP and the NPR-C agonist cANF each decreased SAN CV and shifted the initial exit site inferiorly. The effects of cANF (30% reduction) were larger than BNP or CNP (∼15% reduction), indicating that BNP and CNP activate multiple natriuretic peptide receptors. In support of this, the inhibitory effects of BNP were absent in NPR-C knockout mice, where BNP instead elicited a further increase (∼25%) in CV. Measurements in externally paced atrial preparations demonstrate that the effects of natriuretic peptides on CV are partially independent of changes in cycle length. These data provide detailed novel insight into the complex effects of natriuretic peptides and their receptors on electrical conduction in the heart.


Asunto(s)
Potenciales de Acción/fisiología , Función Atrial/fisiología , Sistema de Conducción Cardíaco/fisiología , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Tipo-C/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Nodo Sinoatrial/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Conducción Nerviosa/fisiología
13.
Proc Natl Acad Sci U S A ; 108(33): 13576-81, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21825130

RESUMEN

Rapid electrical conduction in the His-Purkinje system tightly controls spatiotemporal activation of the ventricles. Although recent work has shed much light on the regulation of early specification and morphogenesis of the His-Purkinje system, less is known about how transcriptional regulation establishes impulse conduction properties of the constituent cells. Here we show that Iroquois homeobox gene 3 (Irx3) is critical for efficient conduction in this specialized tissue by antithetically regulating two gap junction-forming connexins (Cxs). Loss of Irx3 resulted in disruption of the rapid coordinated spread of ventricular excitation, reduced levels of Cx40, and ectopic Cx43 expression in the proximal bundle branches. Irx3 directly represses Cx43 transcription and indirectly activates Cx40 transcription. Our results reveal a critical role for Irx3 in the precise regulation of intercellular gap junction coupling and impulse propagation in the heart.


Asunto(s)
Fascículo Atrioventricular/fisiología , Sistema de Conducción Cardíaco , Proteínas de Homeodominio/fisiología , Ramos Subendocárdicos/fisiología , Factores de Transcripción/fisiología , Animales , Conexina 43/genética , Conexinas/genética , Uniones Comunicantes , Regulación de la Expresión Génica , Genes Homeobox , Ventrículos Cardíacos , Ratones , Transcripción Genética
14.
Can J Cardiol ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460611

RESUMEN

Age is a major risk factor for the development of cardiovascular diseases in men and in women. However, not all people age at the same rate and those who are aging rapidly are considered frail, compared with their fit counterparts. Frailty is an important clinical challenge because those who are frail are more likely to develop and die from illnesses, including cardiovascular diseases, than fit people of the same age. This increase in susceptibility to cardiovascular diseases in older individuals might occur as the cellular and molecular mechanisms involved in the aging process facilitate structural and functional damage in the heart. Consistent with this, recent studies in murine frailty models have provided strong evidence that maladaptive cardiac remodelling in older mice is the most pronounced in mice with a high level of frailty. For example, there is evidence that ventricular hypertrophy and contractile dysfunction increase as frailty increases in aging mice. Additionally, fibrosis and slowing of conduction in the sinoatrial node and atria are proportional to the level of frailty. These modifications could predispose frail older adults to diseases like heart failure and atrial fibrillation. This preclinical work also raises the possibility that emerging interventions designed to "treat frailty" might also treat or prevent cardiovascular diseases. These findings might help to explain why frail older people are most likely to develop these disorders as they age.

15.
Can J Cardiol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604339

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) refers to a clinical condition in which the signs of heart failure, such as pulmonary congestion, peripheral edema, and increased natriuretic peptide levels, are present despite normal ejection fractions and the absence of other causes (eg, pericardial disease). The ejection fraction cutoff for the definition of HFpEF has varied in the past, but recent society guidelines have settled on a consensus of 50%. HFpEF is particularly common in the elderly population. The aim of this narrative review is to summarize the available literature regarding HFpEF in elderly patients in terms of evidence for the age dependence, specific clinical features, and underlying mechanisms. In the clinical arena, we review the epidemiology, discuss distinct clinical phenotypes typically seen in elderly patients, the importance of frailty, the role of biomarkers, and the role of medical therapies (including sodium-glucose cotransport protein 2 inhibitors, renin-angiotensin-aldosterone system blockers, angiotensin receptor/neprilysin inhibitors, diuretics, and ß-adrenergic receptor blockers). We then go on to discuss the basic mechanisms implicated in HFpEF, including cellular senescence, fibrosis, inflammation, mitochondrial dysfunction, enhanced production of reactive oxygen species, abnormal cellular calcium handling, changes in microRNA signalling, insulin resistance, and sex hormone changes. Finally, we review knowledge gaps and promising areas of future investigation. Improved understanding of the specific clinical manifestations of HFpEF in elderly individuals and of the fundamental mechanisms that contribute to the age-related risk of HFpEF promises to lead to novel diagnostic and treatment approaches that will improve outcomes for this common cardiac disorder in a vulnerable population.

16.
Crit Rev Clin Lab Sci ; 50(3): 79-89, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23885725

RESUMEN

The mechanisms by which statins are beneficial are incompletely understood. While the lowering of low-density lipoprotein concentration is associated with regression of atherosclerosis, the observed benefit of statin therapy begins within months after its initiation, making regression an unlikely cause. Although LDL-C lowering is the main mechanism by which statin therapy reduces cardiovascular events, evidence suggests that at least some of the beneficial actions of statins may be mediated by their pleiotropic effects. Thus, statins may modulate the function of cardiovascular cells and key signalling proteins, including small G-proteins, to ultimately exert their pleiotropic effects. Sphingosine-1-phosphate (S1P) is a naturally occurring bioactive lysophospholipid that regulates diverse physiological functions in a variety of different organ systems. Within the cardiovascular system, S1P mediates cardioprotection following ischemia/reperfusion injury, anti-inflammatory response, improvement of endothelial function, increased mobilization and differentiation of endothelial progenitor cells, inhibition of oxidation, and anti-atherogenic and anti-thrombotic actions. Early evidence suggests that the pleiotropic effects of statins may be related to an increase in S1P signalling. This review focuses on S1P signalling as the potential mechanism underlying the pleiotropic effects of statins. An improved understanding of this mechanism may be vital for establishing the clinical relevance of statins and their importance in the treatment and prevention of coronary artery disease. Key points Several studies have demonstrated a benefit from lowering serum LDL-C with statins in patients with and without clinical evidence of CAD. These may be mediated by the pleiotropic effects of statins-the mechanisms of which are incompletely understood. Early evidence suggests that statins may increase S1P signalling pathways through upregulation of the expression of S1P receptors and an increase in plasma levels of S1P to ultimately exert their pleiotropic effects. Future clinical trials and basic science research aimed at the underlying mechanisms of the pleiotropic effects of statins should enlighten us to their relative clinical relevance and importance.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lisofosfolípidos/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Animales , Células Cultivadas , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Esfingosina/metabolismo
17.
Cardiovasc Res ; 119(17): 2697-2711, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37643895

RESUMEN

AIMS: The sympathetic nervous system increases HR by activating ß-adrenergic receptors (ß-ARs) and increasing cAMP in sinoatrial node (SAN) myocytes while phosphodiesterases (PDEs) degrade cAMP. Chronotropic incompetence, the inability to regulate heart rate (HR) in response to sympathetic nervous system activation, is common in hypertensive heart disease; however, the basis for this is poorly understood. The objective of this study was to determine the mechanisms leading to chronotropic incompetence in mice with angiotensin II (AngII)-induced hypertensive heart disease. METHODS AND RESULTS: C57BL/6 mice were infused with saline or AngII (2.5 mg/kg/day for 3 weeks) to induce hypertensive heart disease. HR and SAN function in response to the ß-AR agonist isoproterenol (ISO) were studied in vivo using telemetry and electrocardiography, in isolated atrial preparations using optical mapping, in isolated SAN myocytes using patch-clamping, and using molecular biology. AngII-infused mice had smaller increases in HR in response to physical activity and during acute ISO injection. Optical mapping of the SAN in AngII-infused mice demonstrated impaired increases in conduction velocity and altered conduction patterns in response to ISO. Spontaneous AP firing responses to ISO in isolated SAN myocytes from AngII-infused mice were impaired due to smaller increases in diastolic depolarization (DD) slope, hyperpolarization-activated current (If), and L-type Ca2+ current (ICa,L). These changes were due to increased localization of PDE4D surrounding ß1- and ß2-ARs in the SAN, increased SAN PDE4 activity, and reduced cAMP generation in response to ISO. Knockdown of PDE4D using a virus-delivered shRNA or inhibition of PDE4 with rolipram normalized SAN sensitivity to ß-AR stimulation in AngII-infused mice. CONCLUSIONS: AngII-induced hypertensive heart disease results in impaired HR responses to ß-AR stimulation due to up-regulation of PDE4D and reduced effects of cAMP on spontaneous AP firing in SAN myocytes.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Hipertensión , Receptores Adrenérgicos beta , Nodo Sinoatrial , Animales , Ratones , Arritmias Cardíacas , Isoproterenol/farmacología , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal , Hipertensión/inducido químicamente , Hipertensión/complicaciones , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo
18.
Heart Rhythm O2 ; 4(11): 725-732, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034891

RESUMEN

The current antiarrhythmic paradigm is mainly centered around modulating membrane voltage. However, abnormal cytosolic calcium (Ca2+) signaling, which plays an important role in driving membrane voltage, has not been targeted for therapeutic purposes in arrhythmogenesis. There is clear evidence for bidirectional coupling between membrane voltage and intracellular Ca2+. Cytosolic Ca2+ regulates membrane voltage through Ca2+-sensitive membrane currents. As a component of Ca2+-sensitive currents, Ca2+-activated nonspecific cationic current through the TRPM4 (transient receptor potential melastatin 4) channel plays a significant role in Ca2+-driven changes in membrane electrophysiology. In myopathic and ischemic ventricles, upregulation and/or enhanced activity of this current is associated with the generation of afterdepolarization (both early and delayed), reduction of repolarization reserve, and increased propensity to ventricular arrhythmias. In this review, we describe a novel concept for the management of ventricular arrhythmias in the remodeled ventricle based on mechanistic concepts from experimental studies, by uncoupling the Ca2+-induced changes in membrane voltage by inhibition of this TRPM4-mediated current.

19.
JACC Basic Transl Sci ; 8(8): 922-936, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37719430

RESUMEN

Atrial fibrillation (AF) is highly prevalent in type 2 diabetes where it increases morbidity and mortality. Glucagon-like peptide (GLP)-1 receptor agonists are used in the treatment of type 2 diabetes (T2DM), but their effects on AF in T2DM are poorly understood. The present study demonstrates type 2 diabetic db/db mice are highly susceptible to AF in association with atrial electrical and structural remodeling. GLP-1, as well as the long-acting GLP-1 analogue liraglutide, reduced AF and prevented atrial remodeling in db/db mice. These data suggest that GLP-1 and related analogues could protect against AF in patients with T2DM.

20.
Circ Arrhythm Electrophysiol ; 16(11): e012199, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37933567

RESUMEN

BACKGROUND: ß-AR (ß-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca2+ homeostasis via cAMP-dependent mechanisms; however, enhanced ß-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca2+ homeostasis, and atrial arrhythmogenesis is incompletely understood. METHODS: Studies were performed using atrial samples from human patients with AF or sinus rhythm and in wild-type and NPR-B-deficient (NPR-B+/-) mice. Studies were conducted in anesthetized mice by intracardiac electrophysiology, in isolated mouse atrial preparations using high-resolution optical mapping, in isolated mouse and human atrial myocytes using patch-clamping and Ca2+ imaging, and in mouse and human atrial tissues using molecular biology. RESULTS: Atrial NPR-B protein levels were reduced in patients with AF, and NPR-B+/- mice were more susceptible to AF. Atrial cGMP levels and PDE2 (phosphodiesterase 2) activity were reduced in NPR-B+/- mice leading to larger increases in atrial cAMP in the presence of the ß-AR agonist isoproterenol. NPR-B+/- mice displayed larger increases in action potential duration and L-type Ca2+ current in the presence of isoproterenol. This resulted in the occurrence of spontaneous sarcoplasmic reticulum Ca2+ release events and delayed afterdepolarizations in NPR-B+/- atrial myocytes. Phosphorylation of the RyR2 (ryanodine receptor) and phospholamban was increased in NPR-B+/- atria in the presence of isoproterenol compared with the wildtypes. C-type natriuretic peptide inhibited isoproterenol-stimulated L-type Ca2+ current through PDE2 in mouse and human atrial myocytes. CONCLUSIONS: NPR-B protects against AF by preventing enhanced atrial responses to ß-adrenergic receptor agonists.


Asunto(s)
Fibrilación Atrial , Humanos , Ratones , Animales , Fibrilación Atrial/prevención & control , Fibrilación Atrial/metabolismo , Isoproterenol/farmacología , Péptido Natriurético Tipo-C/farmacología , Atrios Cardíacos , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA