Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 203(2): 520-531, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31182481

RESUMEN

Eosinophilic leukocytes develop in the bone marrow and migrate from peripheral blood to tissues, where they maintain homeostasis and promote dysfunction via release of preformed immunomodulatory mediators. In this study, we explore human eosinophil heterogeneity with a specific focus on naturally occurring variations in cytokine content. We found that human eosinophil-associated cytokines varied on a continuum from minimally (coefficient of variation [CV] ≤ 50%) to moderately variable (50% < CV ≤ 90%). Within the moderately variable group, we detected immunoreactive IL-27 (953 ± 504 pg/mg lysate), a mediator not previously associated with human eosinophils. However, our major finding was the distinct and profound variability of eosinophil-associated IL-16 (CV = 103%). Interestingly, eosinophil IL-16 content correlated directly with body mass index (R 2 = 0.60, ***p < 0.0001) in one donor subset. We found no direct correlation between eosinophil IL-16 content and donor age, sex, total leukocytes, lymphocytes, or eosinophils (cells per microliter), nor was there any relationship between IL-16 content and the characterized -295T/C IL-16 promoter polymorphism. Likewise, although eosinophil IL-1ß, IL-1α, and IL-6 levels correlated with one another, there was no direct association between any of these cytokines and eosinophil IL-16 content. Finally, a moderate increase in total dietary fat resulted in a 2.7-fold reduction in eosinophil IL-16 content among C57BL/6-IL5tg mice. Overall, these results suggest that relationships between energy metabolism, eosinophils, and IL-16 content are not direct or straightforward. Nonetheless, given our current understanding of the connections between asthma and obesity, these findings suggest important eosinophil-focused directions for further exploration.


Asunto(s)
Citocinas/inmunología , Eosinófilos/inmunología , Interleucina-16/inmunología , Adulto , Anciano , Animales , Asma/inmunología , Médula Ósea/inmunología , Femenino , Humanos , Recuento de Leucocitos/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Persona de Mediana Edad , Adulto Joven
2.
J Immunol ; 202(3): 871-882, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578308

RESUMEN

Severe respiratory virus infections feature robust local host responses that contribute to disease severity. Immunomodulatory strategies that limit virus-induced inflammation may be of critical importance, notably in the absence of antiviral vaccines. In this study, we examined the role of the pleiotropic cytokine IL-6 in acute infection with pneumonia virus of mice (PVM), a natural rodent pathogen that is related to respiratory syncytial virus and that generates local inflammation as a feature of severe infection. In contrast to Influenza A, PVM is substantially less lethal in IL-6 -/- mice than it is in wild-type, a finding associated with diminished neutrophil recruitment and reduced fluid accumulation in lung tissue. Ly6Chi proinflammatory monocytes are recruited in response to PVM via a CCR2-dependent mechanism, but they are not a major source of IL-6 nor do they contribute to lethal sequelae of infection. By contrast, alveolar macrophages are readily infected with PVM in vivo; ablation of alveolar macrophages results in prolonged survival in association with a reduction in virus-induced IL-6. Finally, as shown previously, administration of immunobiotic Lactobacillus plantarum to the respiratory tracts of PVM-infected mice promoted survival in association with diminished levels of IL-6. We demonstrated in this study that IL-6 suppression is a critical feature of the protective mechanism; PVM-infected IL-6 -/- mice responded to low doses of L. plantarum, and administration of IL-6 overcame L. plantarum-mediated protection in PVM-infected wild-type mice. Taken together, these results connect the actions of IL-6 to PVM pathogenesis and suggest cytokine blockade as a potential therapeutic modality in severe infection.


Asunto(s)
Interleucina-6/inmunología , Virus de la Neumonía Murina/inmunología , Infecciones por Pneumovirus/inmunología , Animales , Inflamación , Interleucina-6/farmacología , Lactobacillus plantarum/inmunología , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Probióticos/administración & dosificación , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología
3.
J Immunol ; 203(2): 476-484, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142604

RESUMEN

Eosinophils are present in muscle lesions associated with Duchenne muscular dystrophy and dystrophin-deficient mdx mice that phenocopy this disorder. Although it has been hypothesized that eosinophils promote characteristic inflammatory muscle damage, this has not been fully examined. In this study, we generated mice with the dystrophin mutation introduced into PHIL, a strain with a transgene that directs lineage-specific eosinophil ablation. We also explored the impact of eosinophil overabundance on dystrophinopathy by introducing the dystrophin mutation into IL-5 transgenic mice. We evaluated the degree of eosinophil infiltration in association with myofiber size distribution, centralized nuclei, serum creatine kinase, and quantitative histopathology scores. Among our findings, eosinophils were prominent in the quadriceps muscles of 4-wk-old male mdx mice but no profound differences were observed in the quantitative measures of muscle damage when comparing mdx versus mdx.PHIL versus mdx.IL5tg mice, despite dramatic differences in eosinophil infiltration (CD45+CD11c-Gr1-MHC class IIloSiglecF+ eosinophils at 1.2 ± 0.34% versus <0.1% versus 20 ± 7.6% of total cells, respectively). Further evaluation revealed elevated levels of eosinophil chemoatttractants eotaxin-1 and RANTES in the muscle tissue of all three dystrophin-deficient strains; eotaxin-1 concentration in muscle correlated inversely with age. Cytokines IL-4 and IL-1R antagonist were also detected in association with eosinophils in muscle. Taken together, our findings challenge the long-held perception of eosinophils as cytotoxic in dystrophin-deficient muscle; we show clearly that eosinophil infiltration is not a driving force behind acute muscle damage in the mdx mouse strain. Ongoing studies will focus on the functional properties of eosinophils in this unique microenvironment.


Asunto(s)
Eosinófilos/inmunología , Distrofia Muscular de Duchenne/inmunología , Animales , Modelos Animales de Enfermedad , Distrofina/inmunología , Femenino , Interleucina-4/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/inmunología , Receptores de Interleucina-1/inmunología
4.
Immunol Rev ; 278(1): 20-40, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28658543

RESUMEN

In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical TH 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.


Asunto(s)
Asma/etiología , Asma/metabolismo , Modelos Biológicos , Células Th2/inmunología , Células Th2/metabolismo , Animales , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Anticuerpos Antiidiotipos/farmacología , Anticuerpos Antiidiotipos/uso terapéutico , Asma/tratamiento farmacológico , Asma/patología , Comunicación Celular , Quimiocina CCL11/metabolismo , Citocinas/metabolismo , Citocinas/farmacología , Citocinas/uso terapéutico , Susceptibilidad a Enfermedades , Resistencia a Medicamentos , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunoglobulina E/inmunología , Inmunomodulación , MicroARNs/genética , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
5.
Int Arch Allergy Immunol ; 181(1): 11-23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31786573

RESUMEN

Eosinophils and their secretory mediators play an important role in the pathogenesis of infectious and inflammatory disorders. Although eosinophils are largely evolutionally conserved, their physiologic functions are not well understood. Given the availability of new eosinophil-targeted depletion therapies, there has been a renewed interest in understanding eosinophil biology as these strategies may result in secondary disorders when applied over long periods of time. Recent data suggest that eosinophils are not only involved in immunological effector functions but also carry out tissue protective and immunoregulatory functions that actively contribute to the maintenance of homeostasis. Prolonged eosinophil depletion may therefore result in the development of secondary disorders. Here, we review recent literature pointing to important roles for eosinophils in promoting immune defense, antibody production, activation of adipose tissue, and tissue remodeling and fibrosis. We also reflect on patient data from clinical trials that feature anti-eosinophil therapeutics.


Asunto(s)
Eosinófilos/inmunología , Síndrome Hipereosinofílico/inmunología , Inflamación/inmunología , Animales , Formación de Anticuerpos , Humanos , Inmunidad Celular , Inmunomodulación , Interleucina-5 , Cicatrización de Heridas
6.
J Immunol ; 200(2): 632-642, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29212906

RESUMEN

A link between inflammatory disease and bone loss is now recognized. However, limited data exist on the impact of virus infection on bone loss and regeneration. Bone loss results from an imbalance in remodeling, the physiological process whereby the skeleton undergoes continual cycles of formation and resorption. The specific molecular and cellular mechanisms linking virus-induced inflammation to bone loss remain unclear. In the current study, we provide evidence that infection of mice with either lymphocytic choriomeningitis virus (LCMV) or pneumonia virus of mice (PVM) resulted in rapid and substantial loss of osteoblasts from the bone surface. Osteoblast ablation was associated with elevated levels of circulating inflammatory cytokines, including TNF-α, IFN-γ, IL-6, and CCL2. Both LCMV and PVM infections resulted in reduced osteoblast-specific gene expression in bone, loss of osteoblasts, and reduced serum markers of bone formation, including osteocalcin and procollagen type 1 N propeptide. Infection of Rag-1-deficient mice (which lack adaptive immune cells) or specific depletion of CD8+ T lymphocytes limited osteoblast loss associated with LCMV infection. By contrast, CD8+ T cell depletion had no apparent impact on osteoblast ablation in association with PVM infection. In summary, our data demonstrate dramatic loss of osteoblasts in response to virus infection and associated systemic inflammation. Further, the inflammatory mechanisms mediating viral infection-induced bone loss depend on the specific inflammatory condition.


Asunto(s)
Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Neumonía Murina/inmunología , Osteoblastos/virología , Infecciones por Pneumovirus/inmunología , Infecciones por Pneumovirus/virología , Animales , Biomarcadores , Médula Ósea/patología , Huesos/metabolismo , Huesos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Proteínas de Homeodominio/genética , Depleción Linfocítica , Ratones , Ratones Noqueados , Osteoblastos/inmunología , Osteogénesis
7.
J Biol Chem ; 293(33): 12690-12702, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29929985

RESUMEN

Neutrophils are white blood cells that are mobilized to damaged tissues and to sites of pathogen invasion, providing the first line of host defense. Chemokines displayed on the surface of blood vessels promote migration of neutrophils to these sites, and tissue- and pathogen-derived chemoattractant signals, including N-formylmethionylleucylphenylalanine (fMLP), elicit further migration to sites of infection. Although nearly all chemoattractant receptors use heterotrimeric G proteins to transmit signals, many of the mechanisms lying downstream of chemoattractant receptors that either promote or limit neutrophil motility are incompletely defined. Here, we show that regulator of G protein signaling 5 (RGS5), a protein that modulates G protein activity, is expressed in both human and murine neutrophils. We detected significantly more neutrophils in the airways of Rgs5-/- mice than WT counterparts following acute respiratory virus infection and in the peritoneum in response to injection of thioglycollate, a biochemical proinflammatory stimulus. RGS5-deficient neutrophils responded with increased chemotaxis elicited by the chemokines CXC motif chemokine ligand 1 (CXCL1), CXCL2, and CXCL12 but not fMLP. Moreover, adhesion of these cells was increased in the presence of both CXCL2 and fMLP. In summary, our results indicate that RGS5 deficiency increases chemotaxis and adhesion, leading to more efficient neutrophil mobilization to inflamed tissues in mice. These findings suggest that RGS5 expression and activity in neutrophils determine their migrational patterns in the complex microenvironments characteristic of inflamed tissues.


Asunto(s)
Factores Quimiotácticos/metabolismo , Quimiotaxis , Neutrófilos/patología , Proteínas RGS/metabolismo , Proteínas RGS/fisiología , Animales , Adhesión Celular , Movimiento Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Neutrófilos/metabolismo , Transducción de Señal
8.
J Virol ; 90(2): 979-91, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26537680

RESUMEN

UNLABELLED: Pneumonia virus of mice (PVM) is a natural rodent pathogen that replicates in bronchial epithelial cells and reproduces many clinical and pathological features of the more severe forms of disease associated with human respiratory syncytial virus. In order to track virus-target cell interactions during acute infection in vivo, we developed rK2-PVM, bacterial artificial chromosome-based recombinant PVM strain J3666 that incorporates the fluorescent tag monomeric Katushka 2 (mKATE2). The rK2-PVM pathogen promotes lethal infection in BALB/c mice and elicits characteristic cytokine production and leukocyte recruitment to the lung parenchyma. Using recombinant virus, we demonstrate for the first time PVM infection of both dendritic cells (DCs; CD11c(+) major histocompatibility complex class II(+)) and alveolar macrophages (AMs; CD11c(+) sialic acid-binding immunoglobulin-like lectin F(+)) in vivo and likewise detect mKATE2(+) DCs in mediastinal lymph nodes from infected mice. AMs support both active virus replication and production of infectious virions. Furthermore, we report that priming of the respiratory tract with immunobiotic Lactobacillus plantarum, a regimen that results in protection against the lethal inflammatory sequelae of acute respiratory virus infection, resulted in differential recruitment of neutrophils, DCs, and lymphocytes to the lungs in response to rK2-PVM and a reduction from ∼ 40% to <10% mKATE2(+) AMs in association with a 2-log drop in the release of infectious virions. In contrast, AMs from L. plantarum-primed mice challenged with virus ex vivo exhibited no differential susceptibility to rK2-PVM. Although the mechanisms underlying Lactobacillus-mediated viral suppression remain to be fully elucidated, this study provides insight into the cellular basis of this response. IMPORTANCE: Pneumonia virus of mice (PVM) is a natural mouse pathogen that serves as a model for severe human respiratory syncytial virus disease. We have developed a fully functional recombinant PVM strain with a fluorescent reporter protein (rK2-PVM) that permits us to track infection of target cells in vivo. With rK2-PVM, we demonstrate infection of leukocytes in the lung, notably, dendritic cells and alveolar macrophages. Alveolar macrophages undergo productive infection and release infectious virions. We have shown previously that administration of immunobiotic Lactobacillus directly to the respiratory mucosa protects mice from the lethal sequelae of PVM infection in association with profound suppression of the virus-induced inflammatory response. We show here that Lactobacillus administration also limits infection of leukocytes in vivo and results in diminished release of infectious virions from alveolar macrophages. This is the first study to provide insight into the cellular basis of the antiviral impact of immunobiotic L. plantarum.


Asunto(s)
Factores Inmunológicos/administración & dosificación , Lactobacillus plantarum/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Virus de la Neumonía Murina/inmunología , Probióticos/administración & dosificación , Sistema Respiratorio/inmunología , Animales , Células Dendríticas/inmunología , Células Dendríticas/virología , Femenino , Ganglios Linfáticos/inmunología , Ratones Endogámicos BALB C
9.
J Biol Chem ; 290(14): 8863-75, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25713137

RESUMEN

RNase A is the prototype of an extensive family of divergent proteins whose members share a unique disulfide-bonded tertiary structure, conserved catalytic motifs, and the ability to hydrolyze polymeric RNA. Several members of this family maintain independent roles as ribonucleases and modulators of innate immunity. Here we characterize mouse eosinophil-associated RNase (Ear) 11, a divergent member of the eosinophil ribonuclease cluster, and the only known RNase A ribonuclease expressed specifically in response to Th2 cytokine stimulation. Mouse Ear 11 is differentially expressed in somatic tissues at baseline (brain ≪ liver < lung < spleen); systemic stimulation with IL-33 results in 10-5000-fold increased expression in lung and spleen, respectively. Ear 11 is also expressed in response to protective priming of the respiratory mucosa with Lactobacillus plantarum; transcripts are detected both locally in lung as well as systemically in bone marrow and spleen. Mouse Ear 11 is enzymatically active, although substantially less so than mEar 1 and mEar 2; the relative catalytic efficiency (kcat/Km) of mEar 11 is diminished ∼1000-1500-fold. However, in contrast to RNase 2/EDN and mEar 2, which have been characterized as selective chemoattractants for CD11c(+) dendritic cells, mEar 11 has prominent chemoattractant activity for F4/80(+)CD11c(-) tissue macrophages. Chemoattractant activity is not dependent on full enzymatic activity, and requires no interaction with the pattern recognition receptor, Toll-like receptor 2 (TLR2). Taken together, this work characterizes a divergent RNase A ribonuclease with a unique expression pattern and function, and highlights the versatility of this family in promoting innate immunity.


Asunto(s)
Proteína Catiónica del Eosinófilo/metabolismo , Macrófagos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Proteína Catiónica del Eosinófilo/química , Proteína Catiónica del Eosinófilo/genética , Inmunidad Innata , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Bazo/citología
10.
Blood ; 123(5): 743-52, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24297871

RESUMEN

Eosinophils are recruited to the airways as a prominent feature of the asthmatic inflammatory response where they are broadly perceived as promoting pathophysiology. Respiratory virus infections exacerbate established asthma; however, the role of eosinophils and the nature of their interactions with respiratory viruses remain uncertain. To explore these questions, we established acute infection with the rodent pneumovirus, pneumonia virus of mice (PVM), in 3 distinct mouse models of Th2 cytokine-driven asthmatic inflammation. We found that eosinophils recruited to the airways of otherwise naïve mice in response to Aspergillus fumigatus, but not ovalbumin sensitization and challenge, are activated by and degranulate specifically in response to PVM infection. Furthermore, we demonstrate that activated eosinophils from both Aspergillus antigen and cytokine-driven asthma models are profoundly antiviral and promote survival in response to an otherwise lethal PVM infection. Thus, although activated eosinophils within a Th2-polarized inflammatory response may have pathophysiologic features, they are also efficient and effective mediators of antiviral host defense.


Asunto(s)
Eosinófilos/inmunología , Pulmón/inmunología , Pulmón/virología , Virus de la Neumonía Murina/inmunología , Infecciones por Pneumovirus/inmunología , Animales , Aspergillus fumigatus/inmunología , Asma/inmunología , Asma/microbiología , Degranulación de la Célula , Eosinófilos/fisiología , Eosinófilos/virología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología
11.
J Immunol ; 192(11): 5265-72, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24748495

RESUMEN

We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient µMT mice or Jh mice, and Lactobacillus-primed µMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed µMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient µMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.


Asunto(s)
Linfocitos B/inmunología , Lactobacillus/inmunología , Pulmón/inmunología , Infecciones por Pneumovirus/inmunología , Pneumovirus/inmunología , Mucosa Respiratoria/inmunología , Animales , Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/inmunología , Citocinas/genética , Citocinas/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Pneumovirus/genética , Infecciones por Pneumovirus/genética , Infecciones por Pneumovirus/patología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología
12.
J Immunol ; 193(8): 4072-82, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25200951

RESUMEN

Respiratory virus infections are often pathogenic, driving severe inflammatory responses. Most research has focused on localized effects of virus infection and inflammation. However, infection can induce broad-reaching, systemic changes that are only beginning to be characterized. In this study, we assessed the impact of acute pneumovirus infection in C57BL/6 mice on bone marrow hematopoiesis. We hypothesized that inflammatory cytokine production in the lung upregulates myeloid cell production in response to infection. We demonstrate a dramatic increase in the percentages of circulating myeloid cells, which is associated with pronounced elevations in inflammatory cytokines in serum (IFN-γ, IL-6, CCL2), bone (TNF-α), and lung tissue (TNF-α, IFN-γ, IL-6, CCL2, CCL3, G-CSF, osteopontin). Increased hematopoietic stem/progenitor cell percentages (Lineage(-)Sca-I(+)c-kit(+)) were also detected in the bone marrow. This increase was accompanied by an increase in the proportions of committed myeloid progenitors, as determined by colony-forming unit assays. However, no functional changes in hematopoietic stem cells occurred, as assessed by competitive bone marrow reconstitution. Systemic administration of neutralizing Abs to either TNF-α or IFN-γ blocked expansion of myeloid progenitors in the bone marrow and also limited virus clearance from the lung. These findings suggest that acute inflammatory cytokines drive production and differentiation of myeloid cells in the bone marrow by inducing differentiation of committed myeloid progenitors. Our findings provide insight into the mechanisms via which innate immune responses regulate myeloid cell progenitor numbers in response to acute respiratory virus infection.


Asunto(s)
Diferenciación Celular/inmunología , Citocinas/inmunología , Células Progenitoras Mieloides/citología , Infecciones por Pneumovirus/inmunología , Pneumovirus , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Células de la Médula Ósea/citología , Proliferación Celular , Citocinas/sangre , Hematopoyesis , Inmunidad Innata , Inflamación/inmunología , Mediadores de Inflamación/inmunología , Interferón gamma/inmunología , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/inmunología
13.
Blood ; 122(5): 781-90, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23736699

RESUMEN

Eosinophil activities are often linked with allergic diseases such as asthma and the pathologies accompanying helminth infection. These activities have been hypothesized to be mediated, in part, by the release of cationic proteins stored in the secondary granules of these granulocytes. The majority of the proteins stored in these secondary granules (by mass) are major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX). Unpredictably, a knockout approach targeting the genes encoding these proteins demonstrated that, unlike in mice containing a single deficiency of only MBP-1 or EPX, the absence of both granule proteins resulted in the near complete loss of peripheral blood eosinophils with no apparent impact on any other hematopoietic lineage. Moreover, the absence of MBP-1 and EPX promoted a concomitant loss of eosinophil lineage-committed progenitors in the marrow, identifying a specific blockade in eosinophilopoiesis as the causative event. Significantly, this blockade of eosinophilopoiesis is also observed in ex vivo cultures of marrow progenitors and is not rescued in vivo by adoptive bone marrow engraftment, suggesting a cell-autonomous defect in marrow progenitors. These observations implicate a role for granule protein gene expression as a regulator of eosinophilopoiesis and provide another strain of mice congenitally deficient of eosinophils.


Asunto(s)
Proteína Mayor Básica del Eosinófilo/fisiología , Peroxidasa del Eosinófilo/fisiología , Eosinófilos/fisiología , Mielopoyesis/genética , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteína Mayor Básica del Eosinófilo/genética , Proteína Mayor Básica del Eosinófilo/metabolismo , Peroxidasa del Eosinófilo/genética , Peroxidasa del Eosinófilo/metabolismo , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Interleucina-5/farmacología , Recuento de Leucocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mielopoyesis/efectos de los fármacos , Mielopoyesis/fisiología
14.
Int J Mol Sci ; 16(7): 15442-55, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26184157

RESUMEN

The eosinophil-derived neurotoxin (EDN/RNase2) and its divergent orthologs, the mouse eosinophil-associated RNases (mEars), are prominent secretory proteins of eosinophilic leukocytes and are all members of the larger family of RNase A-type ribonucleases. While EDN has broad antiviral activity, targeting RNA viruses via mechanisms that may require enzymatic activity, more recent studies have elucidated how these RNases may generate host defense via roles in promoting leukocyte activation, maturation, and chemotaxis. This review provides an update on recent discoveries, and highlights the versatility of this family in promoting innate immunity.


Asunto(s)
Neurotoxina Derivada del Eosinófilo/metabolismo , Eosinófilos/metabolismo , Animales , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Neurotoxina Derivada del Eosinófilo/clasificación , Neurotoxina Derivada del Eosinófilo/genética , Eosinófilos/inmunología , Virus de la Hepatitis B/efectos de los fármacos , Humanos , Inmunidad Innata , Filogenia , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología
15.
Eur J Immunol ; 43(8): 2217-28, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23670593

RESUMEN

Here, we describe a novel method via which ex vivo cultured mouse bone marrow derived eosinophils (bmEos) can be adoptively transferred into recipient mice in order to study receptor-dependent recruitment to lung tissue in vivo. Intratracheal instillation of recombinant human eotaxin-2 (hCCL24) prior to introduction of bmEos via tail vein injection resulted in an approximately fourfold increase in Siglec F-positive/CD11c-negative eosinophils in the lungs of eosinophil-deficient ΔdblGATA recipient mice compared with controls. As anticipated, bmEos generated from CCR3-gene-deleted mice did not migrate to the lung in response to hCCL24 in this model, indicating specific receptor dependence. BmEos generated from GFP-positive BALB/c mice responded similarly to hCCL24 in vitro and were detected in lung tissue of BALB/c WT as well as BALB/c ΔdblGATA eosinophil-deficient recipient mice, at approximately fourfold (at 5 h post-injection) and approximately threefold (at 24 h postinjection) over baseline, respectively. Comparable results were obtained with GFP-positive C57BL/6 bmEos responding to intratracheal hCCL24 in C57BL/6 ΔdblGATA recipient mice. The use of ex vivo cultured bmEos via one or more of these methods offers the possibility of manipulating bmEos prior to transfer into a WT or gene-deleted recipient host. Thus, this chemotaxis model represents a novel and robust tool for pharmacological studies in vivo.


Asunto(s)
Células de la Médula Ósea/citología , Quimiotaxis de Leucocito/inmunología , Eosinófilos/inmunología , Pulmón/inmunología , Traslado Adoptivo , Animales , Células de la Médula Ósea/inmunología , Antígeno CD11c/biosíntesis , Células Cultivadas , Quimiocina CCL24/farmacología , Eosinófilos/citología , Eosinófilos/trasplante , Proteínas Fluorescentes Verdes/genética , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR3/genética
17.
Virol J ; 10: 357, 2013 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24359540

RESUMEN

BACKGROUND: Using a murine model of parainfluenza virus infection (mPIV1 or Sendai virus; SeV), we compared the inflammatory responses to lethal and sub-lethal infections in inbred DBA/2 mice. METHODS: Mice were intranasally inoculated with either 1.6×10(3) or 1.6×10(5) infectious units (IU) of SeV or diluent control. Clinical data including daily weights, oxygen saturation, and lung function via whole body plethysmography were collected on days 0, 3-7, and 9-14. Clarified whole lung homogenates were evaluated for inflammatory markers by enzyme-linked immunoassay (ELISA). Data were analyzed using ANOVA or Student t-tests, as appropriate. RESULTS: Mice inoculated with 1.6×10(5) IU of SeV developed a lethal infection with 100% mortality by day 7, while mice inoculated with 1.6×10(3) IU developed a clinically significant infection, with universal weight loss but only 32% mortality. Interestingly, peak virus recovery from the lungs of mice inoculated with 1.6×10(5) IU of SeV did not differ substantially from that detected in mice that received the 100-fold lower inoculum. In contrast, concentrations of CCL5 (RANTES), CCL11 (eotaxin), interferon-γ, CXCL10 (IP-10), and CCL3 (MIP-1α) were significantly higher in lung tissue homogenates from mice inoculated with 1.6×105 IU (p < 0.05). In the lethal infection, levels of CCL11, interferon- γ and CCL3 all correlated strongly with disease severity. CONCLUSION: We observed that severity of SeV-infection in DBA/2 mice was not associated with virus recovery but rather with the levels of proinflammatory cytokines, specifically CCL11, interferon- γ and CCL3, detected in lung tissue in response to SeV infection.


Asunto(s)
Quimiocina CCL11/metabolismo , Quimiocina CCL3/metabolismo , Interferón gamma/metabolismo , Infecciones por Paramyxoviridae/inmunología , Infecciones por Paramyxoviridae/patología , Animales , Peso Corporal , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inflamación/patología , Pulmón/patología , Ratones , Ratones Endogámicos DBA , Oxígeno/sangre , Pletismografía , Pruebas de Función Respiratoria
18.
J Immunol ; 186(2): 1151-61, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21169550

RESUMEN

The inflammatory response to respiratory virus infection can be complex and refractory to standard therapy. Lactobacilli, when targeted to the respiratory epithelium, are highly effective at suppressing virus-induced inflammation and protecting against lethal disease. Specifically, wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus plantarum or Lactobacillus reuteri were completely protected against lethal infection with the virulent rodent pathogen, pneumonia virus of mice; significant protection (60% survival) persisted for at least 13 wk. Protection was not unique to Lactobacillus species, and it was also observed in response to priming with nonpathogenic Gram-positive Listeria innocua. Priming with live lactobacilli resulted in diminished granulocyte recruitment, diminished expression of multiple proinflammatory cytokines (CXCL10, CXCL1, CCL2, and TNF), and reduced virus recovery, although we have demonstrated clearly that absolute virus titer does not predict clinical outcome. Lactobacillus priming also resulted in prolonged survival and protection against the lethal sequelae of pneumonia virus of mice infection in MyD88 gene-deleted (MyD88(-/-)) mice, suggesting that the protective mechanisms may be TLR-independent. Most intriguing, virus recovery and cytokine expression patterns in Lactobacillus-primed MyD88(-/-) mice were indistinguishable from those observed in control-primed MyD88(-/-) counterparts. In summary, we have identified and characterized an effective Lactobacillus-mediated innate immune shield, which may ultimately serve as critical and long-term protection against infection in the absence of specific antiviral vaccines.


Asunto(s)
Lactobacillus plantarum/inmunología , Limosilactobacillus reuteri/inmunología , Virus de la Neumonía Murina/inmunología , Infecciones por Pneumovirus/mortalidad , Infecciones por Pneumovirus/prevención & control , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/microbiología , Administración Intranasal , Animales , Antígenos Virales/metabolismo , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Virus de la Neumonía Murina/patogenicidad , Infecciones por Pneumovirus/inmunología , Mucosa Respiratoria/virología , Replicación Viral/inmunología
19.
J Immunol ; 186(10): 5938-48, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21482736

RESUMEN

Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.


Asunto(s)
Células Dendríticas/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Virus de la Neumonía Murina/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Infecciones por Pneumovirus/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 7/metabolismo , Inmunidad Adaptativa , Traslado Adoptivo , Animales , Interferones/genética , Interferones/inmunología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Transducción de Señal , Receptor Toll-Like 7/genética
20.
Nat Genet ; 30(4): 411-5, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11925567

RESUMEN

Although the complete genome sequences of over 50 representative species have revealed the many duplicated genes in all three domains of life, the roles of gene duplication in organismal adaptation and biodiversity are poorly understood. In addition, the evolutionary forces behind the functional divergence of duplicated genes are often unknown, leading to disagreement on the relative importance of positive Darwinian selection versus relaxation of functional constraints in this process. The methodology of earlier studies relied largely on DNA sequence analysis but lacked functional assays of duplicated genes, frequently generating contentious results. Here we use both computational and experimental approaches to address these questions in a study of the pancreatic ribonuclease gene (RNASE1) and its duplicate gene (RNASE1B) in a leaf-eating colobine monkey, douc langur. We show that RNASE1B has evolved rapidly under positive selection for enhanced ribonucleolytic activity in an altered microenvironment, a response to increased demands for the enzyme for digesting bacterial RNA. At the same time, the ability to degrade double-stranded RNA, a non-digestive activity characteristic of primate RNASE1, has been lost in RNASE1B, indicating functional specialization and relaxation of purifying selection. Our findings demonstrate the contribution of gene duplication to organismal adaptation and show the power of combining sequence analysis and functional assays in delineating the molecular basis of adaptive evolution.


Asunto(s)
Evolución Molecular , Ribonucleasa Pancreática/genética , Secuencia de Aminoácidos , Animales , Colobinae , Genes Duplicados/genética , Humanos , Concentración de Iones de Hidrógeno , Macaca mulatta , Datos de Secuencia Molecular , Filogenia , ARN/metabolismo , Ribonucleasas/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA