RESUMEN
Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.
Asunto(s)
Variación Estructural del Genoma/genética , Genómica/métodos , Neoplasias/genética , Inversión Cromosómica/genética , Cromotripsis , Variaciones en el Número de Copia de ADN/genética , Reordenamiento Génico/genética , Genoma Humano/genética , Humanos , Mutación/genética , Secuenciación Completa del Genoma/métodosRESUMEN
Homologous recombination (HR) deficiency is associated with DNA rearrangements and cytogenetic aberrations1. Paradoxically, the types of DNA rearrangements that are specifically associated with HR-deficient cancers only minimally affect chromosomal structure2. Here, to address this apparent contradiction, we combined genome-graph analysis of short-read whole-genome sequencing (WGS) profiles across thousands of tumours with deep linked-read WGS of 46 BRCA1- or BRCA2-mutant breast cancers. These data revealed a distinct class of HR-deficiency-enriched rearrangements called reciprocal pairs. Linked-read WGS showed that reciprocal pairs with identical rearrangement orientations gave rise to one of two distinct chromosomal outcomes, distinguishable only with long-molecule data. Whereas one (cis) outcome corresponded to the copying and pasting of a small segment to a distant site, a second (trans) outcome was a quasi-balanced translocation or multi-megabase inversion with substantial (10 kb) duplications at each junction. We propose an HR-independent replication-restart repair mechanism to explain the full spectrum of reciprocal pair outcomes. Linked-read WGS also identified single-strand annealing as a repair pathway that is specific to BRCA2 deficiency in human cancers. Integrating these features in a classifier improved discrimination between BRCA1- and BRCA2-deficient genomes. In conclusion, our data reveal classes of rearrangements that are specific to BRCA1 or BRCA2 deficiency as a source of cytogenetic aberrations in HR-deficient cells.
Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Aberraciones Cromosómicas , Reparación del ADN , Neoplasias , Humanos , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA2/deficiencia , Proteína BRCA2/genética , Inversión Cromosómica , Reparación del ADN/genética , Neoplasias/genética , Translocación Genética/genética , Recombinación Homóloga , Análisis Citogenético , Aberraciones Cromosómicas/clasificaciónRESUMEN
Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.
Asunto(s)
Reparación del ADN , Anemia de Fanconi , Genómica , Neoplasias de Cabeza y Cuello , Humanos , Aldehídos/efectos adversos , Aldehídos/metabolismo , Reparación del ADN/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Neoplasias de Cabeza y Cuello/inducido químicamente , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Infecciones por Papillomavirus , Carcinoma de Células Escamosas de Cabeza y Cuello/inducido químicamente , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Daño del ADN/efectos de los fármacosRESUMEN
AIMS: The impact of sexuality in patients with significant tricuspid regurgitation (TR) undergoing transcatheter tricuspid valve intervention (TTVI) is unknown. The aim of this study was to investigate sex-specific outcomes in patients with significant TR treated with TTVI vs. medical therapy alone. METHODS AND RESULTS: The Transcatheter Tricuspid Valve Therapies (TriValve) registry collected data on patients with significant TR from 24 centres who underwent TTVI from 2016 to 2021. A control cohort was formed by medically managed patients with ≥severe isolated TR diagnosed in 2015-18. The primary endpoint was freedom from all-cause mortality. Secondary endpoints were heart failure (HF) hospitalization, New York Heart Association (NYHA) functional status, and TR severity. One-year outcomes were assessed for the TriValve cohort and compared with the control cohort with the inverse probability of treatment weighting (IPTW). A total of 556 and 2072 patients were included from the TriValve and control groups, respectively. After TTVI, there was no difference between women and men in 1-year freedom from all-cause mortality 80.9% vs. 77.9%, P = 0.56, nor in HF hospitalization (P = 0.36), NYHA Functional Classes III and IV (P = 0.17), and TR severity >2+ at last follow-up (P = 0.42). Multivariable Cox-regression weighted by IPTW showed improved 1-year survival after TTVI compared with medical therapy alone in both women (adjusted hazard ratio 0.45, 95% confidence interval 0.23-0.83, P = 0.01) and men (adjusted hazard ratio 0.42, 95% confidence interval 0.18-0.89, P = 0.03). CONCLUSION: After TTVI in high-risk patients, there were no sex-related differences in terms of survival, HF hospitalization, functional status, and TR reduction up to 1 year. The IPTW analysis shows a survival benefit of TTVI over medical therapy alone in both women and men.
Asunto(s)
Insuficiencia Cardíaca , Implantación de Prótesis de Válvulas Cardíacas , Insuficiencia de la Válvula Tricúspide , Masculino , Humanos , Femenino , Válvula Tricúspide/cirugía , Implantación de Prótesis de Válvulas Cardíacas/métodos , Resultado del Tratamiento , Sistema de Registros , Insuficiencia Cardíaca/complicacionesRESUMEN
The ability to induce targeted mutations in somatic cells in developing organisms and then track the fates of those cells is a powerful approach both for studying neural development and for modeling human disease. The CRISPR/Cas9 system allows for such targeted mutagenesis, and we therefore tested it in combination with a piggyBac transposase lineage labeling system to track the development of neocortical neural progenitors with targeted mutations in genes linked to neurodevelopmental disruptions and tumor formation. We show that sgRNAs designed to target PTEN successfully decreased PTEN expression, and led to neuronal hypertrophy and altered neuronal excitability. Targeting NF1, by contrast, caused increased astrocytogenesis at the expense of neurogenesis, and combined targeting of three tumor suppressors (PTEN, NF1 and P53) resulted in formation of glioblastoma tumors. Our results demonstrate that CRISPR/Cas9 combined with piggyBac transposase lineage labeling can produce unique models of neurodevelopmental disruption and tumors caused by somatic mutation in neural progenitors.
Asunto(s)
Astrocitos/citología , Sistemas CRISPR-Cas/genética , Cromosomas Artificiales Bacterianos , Células Madre/citología , Transposasas/genética , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/patología , Linaje de la Célula , Electroporación , Femenino , Glioblastoma/patología , Humanos , Mutagénesis , Mutación , Neurofibromina 1/metabolismo , Neuronas/citología , Fosfohidrolasa PTEN/metabolismo , Embarazo , Preñez , Ratas , Ratas Wistar , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Approximately 50% of patients with surgically resected early-stage lung cancer develop distant metastasis. At present, there is no in vivo metastasis model to investigate the biology of human lung cancer metastases. Using well-characterized lung adenocarcinoma (LUAD) patient-derived organoids (PDOs), we establish an in vivo metastasis model that preserves the biologic features of human metastases. Results of whole-genome and RNA sequencing establish that our in vivo PDO metastasis model can be used to study clonality and tumor evolution and to identify biomarkers related to organotropism. Investigation of the response of KRASG12C PDOs to sotorasib demonstrates that the model can examine the efficacy of treatments to suppress metastasis and identify mechanisms of drug resistance. Finally, our PDO model cocultured with autologous peripheral blood mononuclear cells can potentially be used to determine the optimal immune-priming strategy for individual patients with LUAD.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Organoides , Humanos , Organoides/patología , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Animales , Ratones , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Modelos Biológicos , Leucocitos Mononucleares/metabolismoRESUMEN
Short-read sequencing is the workhorse of cancer genomics yet is thought to miss many structural variants (SVs), particularly large chromosomal alterations. To characterize missing SVs in short-read whole genomes, we analyzed 'loose ends'-local violations of mass balance between adjacent DNA segments. In the landscape of loose ends across 1,330 high-purity cancer whole genomes, most large (>10-kb) clonal SVs were fully resolved by short reads in the 87% of the human genome where copy number could be reliably measured. Some loose ends represent neotelomeres, which we propose as a hallmark of the alternative lengthening of telomeres phenotype. These pan-cancer findings were confirmed by long-molecule profiles of 38 breast cancer and melanoma cases. Our results indicate that aberrant homologous recombination is unlikely to drive the majority of large cancer SVs. Furthermore, analysis of mass balance in short-read whole genome data provides a surprisingly complete picture of cancer chromosomal structure.
Asunto(s)
Neoplasias de la Mama , Genómica , Humanos , Femenino , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Genoma Humano/genética , Aberraciones Cromosómicas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Variación Estructural del Genoma/genéticaRESUMEN
The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE: Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.
Asunto(s)
Enfermedad de Hodgkin , Células de Reed-Sternberg , Humanos , Células de Reed-Sternberg/patología , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Citometría de Flujo , Evolución MolecularRESUMEN
Myoepithelial carcinomas (MECs) of soft tissue are rare and aggressive tumors affecting young adults and children, but their molecular landscape has not been comprehensively explored through genome sequencing. Here, we present the whole-exome sequencing (WES), whole-genome sequencing (WGS), and RNA sequencing findings of two MECs. Patients 1 and 2 (P1, P2), both male, were diagnosed at 27 and 37 yr of age, respectively, with shoulder (P1) and inguinal (P2) soft tissue tumors. Both patients developed metastatic disease, and P2 died of disease. P1 tumor showed a rhabdoid cytomorphology and a complete loss of INI1 (SMARCB1) expression, associated with a homozygous SMARCB1 deletion. The tumor from P2 showed a clear cell/small cell morphology, retained INI1 expression and strong S100 positivity. By WES and WGS, tumors from both patients displayed low tumor mutation burdens, and no targetable alterations in cancer genes were detected. P2's tumor harbored an EWSR1::KLF15 rearrangement, whereas the tumor from P1 showed a novel ASCC2::GGNBP2 fusion. WGS evidenced a complex genomic event involving mainly Chromosomes 17 and 22 in the tumor from P1, which was consistent with chromoplexy. These findings are consistent with previous reports of EWSR1 rearrangements (50% of cases) in MECs and provide a genetic basis for the loss of SMARCB1 protein expression observed through immunohistochemistry in 10% of 40% of MEC cases. The lack of additional driver mutations in these tumors supports the hypothesis that these alterations are the key molecular events in MEC evolution. Furthermore, the presence of complex structural variant patterns, invisible to WES, highlights the novel biological insights that can be gained through the application of WGS to rare cancers.
Asunto(s)
Carcinoma , Mioepitelioma , Neoplasias de los Tejidos Blandos , Niño , Adulto Joven , Humanos , Masculino , Mioepitelioma/genética , Mioepitelioma/diagnóstico , Mioepitelioma/patología , Neoplasias de los Tejidos Blandos/genética , Carcinoma/genética , Biomarcadores de Tumor/genéticaRESUMEN
The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.
Asunto(s)
COVID-19/genética , COVID-19/patología , Pulmón/patología , SARS-CoV-2 , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/metabolismo , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica , Humanos , Gripe Humana/genética , Gripe Humana/patología , Gripe Humana/virología , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Orthomyxoviridae , RNA-Seq/métodos , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/microbiología , Síndrome de Dificultad Respiratoria/patología , Carga ViralRESUMEN
Telomere crisis contributes to cancer genome evolution, yet only a subset of cancers display breakage-fusion-bridge (BFB) cycles and chromothripsis, hallmarks of experimental telomere crisis identified in previous studies. We examine the spectrum of structural variants (SVs) instigated by natural telomere crisis. Eight spontaneous post-crisis clones did not show prominent patterns of BFB cycles or chromothripsis. Their crisis-induced genome rearrangements varied from infrequent simple SVs to more frequent and complex SVs. In contrast, BFB cycles and chromothripsis occurred in MRC5 fibroblast clones that escaped telomere crisis after CRISPR-controlled telomerase activation. This system revealed convergent evolutionary lineages altering one allele of chromosome 12p, where a short telomere likely predisposed to fusion. Remarkably, the 12p chromothripsis and BFB events were stabilized by independent fusions to chromosome 21. The data establish that telomere crisis can generate a wide spectrum of SVs implying that a lack of BFB patterns and chromothripsis in cancer genomes does not indicate absence of past telomere crisis.
Asunto(s)
Cromotripsis , Neoplasias/genética , Telómero/química , Línea Celular , Inestabilidad Cromosómica , Fibroblastos , Genoma , Inestabilidad Genómica , Humanos , Pulmón , Metafase , Modelos Biológicos , Telómero/ultraestructuraRESUMEN
In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.
Asunto(s)
COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Adulto , Anciano , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antivirales/farmacología , COVID-19/epidemiología , Prueba de Ácido Nucleico para COVID-19 , Interacciones Farmacológicas , Femenino , Perfilación de la Expresión Génica , Genoma Viral , Antígenos HLA/genética , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Humanos , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Ciudad de Nueva York/epidemiología , Técnicas de Amplificación de Ácido Nucleico , Pandemias , RNA-Seq , SARS-CoV-2/clasificación , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19RESUMEN
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, evident as a function of varying viral load (high vs. low) during the course of infection and specific, transcriptional dysregulation in splicing isoforms, T cell receptor expression, and cellular expression states. In particular, cardiac and lung tissues revealed the largest degree of splicing isoform switching and cell expression state loss. Overall, these findings reveal a systemic disruption of cellular and transcriptional pathways from COVID-19 across all tissues, which can inform subsequent studies to combat the mortality of COVID-19, as well to better understand the molecular dynamics of lethal SARS-CoV-2 infection and other viruses.
RESUMEN
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.
RESUMEN
The focus of this project is to improve our understanding of the relationships between brain structure and function in patients presenting with anterior visual pathway compression using functional MRI (fMRI), visual field(VF) maps and diffusion tensor imaging (DTI). Significant visual loss can occur when large pituitary lesions compress the optic chiasm. Surgical resection of these lesions decompresses the chiasm and can lead to visual recovery. In this preliminary study, we selected patients presenting with slowly progressive visual loss secondary to a compressive pituitary region mass. Using preoperative DTI data, we reconstructed white matter projections of the optic radiations and demonstrated a structural correlation with functional vision as quantified by formal visual field mapping and fMRI. The structural data generated through a fiber tracking algorithm may represent a potentially powerful tool to better understand functional visual deficits in patients with anterior visual pathway compression. Furthermore, we believe that specific patterns in preoperative DTI data may predict the likelihood of postoperative visual recovery in a select group of patients.
Asunto(s)
Imagen por Resonancia Magnética , Quiasma Óptico/cirugía , Campos Visuales , Vías Visuales/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Humanos , Quiasma Óptico/diagnóstico por imagen , Enfermedades del Nervio Óptico/etiología , Planificación de Atención al Paciente , Radiografía , Estados Unidos , Vías Visuales/fisiopatologíaRESUMEN
RATIONALE AND OBJECTIVES: Perfusion-weighted computed tomography (CTP) is a relatively recent innovation that estimates a value for cerebral blood flow (CBF) using a series of axial head CT images tracking the time course of a signal from an intravenous contrast bolus. MATERIALS AND METHODS: CTP images were obtained using a standard imaging protocol and were analyzed using commercially available software. A novel computer-based method was used for objective quantification of side-to-side asymmetries of CBF values calculated from CTP images. RESULTS: Our method corrects for the inherent variability of the CTP methodology seen in the subarachnoid hemorrhage (SAH) patient population to potentially aid in the diagnosis of cerebral vasospasm (CVS). This method analyzes and quantifies side-to-side asymmetry of CBF and presents relative differences in a construct termed a Relative Difference Map (RDM). To further automate this process, we have developed a unique methodology that enables a computer to delineate vascular territories within a brain image, regardless of the size and shape of the brain. CONCLUSIONS: While both the quantification of image symmetry using RDMs and the automated assignment of vascular territories were initially designed for the analysis of CTP images, it is likely that they will be useful in a variety of applications.