Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Crit Care Med ; 52(2): 237-247, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095506

RESUMEN

OBJECTIVES: We aimed to develop a computer-aided detection (CAD) system to localize and detect the malposition of endotracheal tubes (ETTs) on portable supine chest radiographs (CXRs). DESIGN: This was a retrospective diagnostic study. DeepLabv3+ with ResNeSt50 backbone and DenseNet121 served as the model architecture for segmentation and classification tasks, respectively. SETTING: Multicenter study. PATIENTS: For the training dataset, images meeting the following inclusion criteria were included: 1) patient age greater than or equal to 20 years; 2) portable supine CXR; 3) examination in emergency departments or ICUs; and 4) examination between 2015 and 2019 at National Taiwan University Hospital (NTUH) (NTUH-1519 dataset: 5,767 images). The derived CAD system was tested on images from chronologically (examination during 2020 at NTUH, NTUH-20 dataset: 955 images) or geographically (examination between 2015 and 2020 at NTUH Yunlin Branch [YB], NTUH-YB dataset: 656 images) different datasets. All CXRs were annotated with pixel-level labels of ETT and with image-level labels of ETT presence and malposition. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: For the segmentation model, the Dice coefficients indicated that ETT would be delineated accurately (NTUH-20: 0.854; 95% CI, 0.824-0.881 and NTUH-YB: 0.839; 95% CI, 0.820-0.857). For the classification model, the presence of ETT could be accurately detected with high accuracy (area under the receiver operating characteristic curve [AUC]: NTUH-20, 1.000; 95% CI, 0.999-1.000 and NTUH-YB: 0.994; 95% CI, 0.984-1.000). Furthermore, among those images with ETT, ETT malposition could be detected with high accuracy (AUC: NTUH-20, 0.847; 95% CI, 0.671-0.980 and NTUH-YB, 0.734; 95% CI, 0.630-0.833), especially for endobronchial intubation (AUC: NTUH-20, 0.991; 95% CI, 0.969-1.000 and NTUH-YB, 0.966; 95% CI, 0.933-0.991). CONCLUSIONS: The derived CAD system could localize ETT and detect ETT malposition with excellent performance, especially for endobronchial intubation, and with favorable potential for external generalizability.


Asunto(s)
Aprendizaje Profundo , Medicina de Emergencia , Humanos , Estudios Retrospectivos , Intubación Intratraqueal/efectos adversos , Intubación Intratraqueal/métodos , Hospitales Universitarios
2.
Radiology ; 306(1): 172-182, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098642

RESUMEN

Background Approximately 40% of pancreatic tumors smaller than 2 cm are missed at abdominal CT. Purpose To develop and to validate a deep learning (DL)-based tool able to detect pancreatic cancer at CT. Materials and Methods Retrospectively collected contrast-enhanced CT studies in patients diagnosed with pancreatic cancer between January 2006 and July 2018 were compared with CT studies of individuals with a normal pancreas (control group) obtained between January 2004 and December 2019. An end-to-end tool comprising a segmentation convolutional neural network (CNN) and a classifier ensembling five CNNs was developed and validated in the internal test set and a nationwide real-world validation set. The sensitivities of the computer-aided detection (CAD) tool and radiologist interpretation were compared using the McNemar test. Results A total of 546 patients with pancreatic cancer (mean age, 65 years ± 12 [SD], 297 men) and 733 control subjects were randomly divided into training, validation, and test sets. In the internal test set, the DL tool achieved 89.9% (98 of 109; 95% CI: 82.7, 94.9) sensitivity and 95.9% (141 of 147; 95% CI: 91.3, 98.5) specificity (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI: 0.94, 0.99), without a significant difference (P = .11) in sensitivity compared with the original radiologist report (96.1% [98 of 102]; 95% CI: 90.3, 98.9). In a test set of 1473 real-world CT studies (669 malignant, 804 control) from institutions throughout Taiwan, the DL tool distinguished between CT malignant and control studies with 89.7% (600 of 669; 95% CI: 87.1, 91.9) sensitivity and 92.8% specificity (746 of 804; 95% CI: 90.8, 94.5) (AUC, 0.95; 95% CI: 0.94, 0.96), with 74.7% (68 of 91; 95% CI: 64.5, 83.3) sensitivity for malignancies smaller than 2 cm. Conclusion The deep learning-based tool enabled accurate detection of pancreatic cancer on CT scans, with reasonable sensitivity for tumors smaller than 2 cm. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Aisen and Rodrigues in this issue.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pancreáticas , Masculino , Humanos , Anciano , Estudios Retrospectivos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos , Páncreas
3.
J Med Syst ; 48(1): 1, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38048012

RESUMEN

PURPOSE: To develop two deep learning-based systems for diagnosing and localizing pneumothorax on portable supine chest X-rays (SCXRs). METHODS: For this retrospective study, images meeting the following inclusion criteria were included: (1) patient age ≥ 20 years; (2) portable SCXR; (3) imaging obtained in the emergency department or intensive care unit. Included images were temporally split into training (1571 images, between January 2015 and December 2019) and testing (1071 images, between January 2020 to December 2020) datasets. All images were annotated using pixel-level labels. Object detection and image segmentation were adopted to develop separate systems. For the detection-based system, EfficientNet-B2, DneseNet-121, and Inception-v3 were the architecture for the classification model; Deformable DETR, TOOD, and VFNet were the architecture for the localization model. Both classification and localization models of the segmentation-based system shared the UNet architecture. RESULTS: In diagnosing pneumothorax, performance was excellent for both detection-based (Area under receiver operating characteristics curve [AUC]: 0.940, 95% confidence interval [CI]: 0.907-0.967) and segmentation-based (AUC: 0.979, 95% CI: 0.963-0.991) systems. For images with both predicted and ground-truth pneumothorax, lesion localization was highly accurate (detection-based Dice coefficient: 0.758, 95% CI: 0.707-0.806; segmentation-based Dice coefficient: 0.681, 95% CI: 0.642-0.721). The performance of the two deep learning-based systems declined as pneumothorax size diminished. Nonetheless, both systems were similar or better than human readers in diagnosis or localization performance across all sizes of pneumothorax. CONCLUSIONS: Both deep learning-based systems excelled when tested in a temporally different dataset with differing patient or image characteristics, showing favourable potential for external generalizability.


Asunto(s)
Aprendizaje Profundo , Medicina de Emergencia , Neumotórax , Humanos , Adulto Joven , Adulto , Estudios Retrospectivos , Neumotórax/diagnóstico por imagen , Rayos X
4.
Eur Radiol ; 29(3): 1074-1082, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30116959

RESUMEN

OBJECTIVE: To develop and evaluate a radiomics nomogram for differentiating the malignant risk of gastrointestinal stromal tumours (GISTs). METHODS: A total of 222 patients (primary cohort: n = 130, our centre; external validation cohort: n = 92, two other centres) with pathologically diagnosed GISTs were enrolled. A Relief algorithm was used to select the feature subset with the best distinguishing characteristics and to establish a radiomics model with a support vector machine (SVM) classifier for malignant risk differentiation. Determinant clinical characteristics and subjective CT features were assessed to separately construct a corresponding model. The models showing statistical significance in a multivariable logistic regression analysis were used to develop a nomogram. The diagnostic performance of these models was evaluated using ROC curves. Further calibration of the nomogram was evaluated by calibration curves. RESULTS: The generated radiomics model had an AUC value of 0.867 (95% CI 0.803-0.932) in the primary cohort and 0.847 (95% CI 0.765-0.930) in the external cohort. In the entire cohort, the AUCs for the radiomics model, subjective CT findings model, clinical index model and radiomics nomogram were 0.858 (95% CI 0.807-0.908), 0.774 (95% CI 0.713-0.835), 0.759 (95% CI 0.697-0.821) and 0.867 (95% CI 0.818-0.915), respectively. The nomogram showed good calibration. CONCLUSIONS: This radiomics nomogram predicted the malignant potential of GISTs with excellent accuracy and may be used as an effective tool to guide preoperative clinical decision-making. KEY POINTS: • CT-based radiomics model can differentiate low- and high-malignant-potential GISTs with satisfactory accuracy compared with subjective CT findings and clinical indexes. • Radiomics nomogram integrated with the radiomics signature, subjective CT findings and clinical indexes can achieve individualised risk prediction with improved diagnostic performance. • This study might provide significant and valuable background information for further studies such as response evaluation of neoadjuvant imatinib and recurrence risk prediction.


Asunto(s)
Algoritmos , Tumores del Estroma Gastrointestinal/diagnóstico , Imagenología Tridimensional/métodos , Clasificación del Tumor/métodos , Nomogramas , Tomografía Computarizada por Rayos X/métodos , Diagnóstico Diferencial , Femenino , Tumores del Estroma Gastrointestinal/clasificación , Tumores del Estroma Gastrointestinal/cirugía , Humanos , Masculino , Persona de Mediana Edad , Periodo Preoperatorio , Curva ROC , Máquina de Vectores de Soporte
5.
Radiology ; 273(2): 417-24, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24991991

RESUMEN

PURPOSE: To evaluate the accuracy of a method of automatic coregistration of the endoluminal surfaces at computed tomographic (CT) colonography performed on separate occasions to facilitate identification of polyps in patients undergoing polyp surveillance. MATERIALS AND METHODS: Institutional review board and HIPAA approval were obtained. A registration algorithm that was designed to coregister the coordinates of endoluminal colonic surfaces on images from prone and supine CT colonographic acquisitions was used to match polyps in sequential studies in patients undergoing polyp surveillance. Initial and follow-up CT colonographic examinations in 26 patients (35 polyps) were selected and the algorithm was tested by means of two methods, the longitudinal method (polyp coordinates from the initial prone and supine acquisitions were used to identify the expected polyp location automatically at follow-up CT colonography) and the consistency method (polyp coordinates from the initial supine acquisition were used to identify polyp location on images from the initial prone acquisition, then on those for follow-up prone and follow-up supine acquisitions). Two observers measured the Euclidean distance between true and expected polyp locations, and mean per-patient registration accuracy was calculated. Segments with and without collapse were compared by using the Kruskal-Wallace test, and the relationship between registration error and temporal separation was investigated by using the Pearson correlation. RESULTS: Coregistration was achieved for all 35 polyps by using both longitudinal and consistency methods. Mean ± standard deviation Euclidean registration error for the longitudinal method was 17.4 mm ± 12.1 and for the consistency method, 26.9 mm ± 20.8. There was no significant difference between these results and the registration error when prone and supine acquisitions in the same study were compared (16.9 mm ± 17.6; P = .451). CONCLUSION: Automatic endoluminal coregistration by using an algorithm at initial CT colonography allowed prediction of endoluminal polyp location at subsequent CT colonography, thereby facilitating detection of known polyps in patients undergoing CT colonographic surveillance.


Asunto(s)
Pólipos del Colon/diagnóstico por imagen , Colonografía Tomográfica Computarizada/métodos , Anciano , Anciano de 80 o más Años , Algoritmos , Medios de Contraste , Diatrizoato , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Vigilancia de la Población , Interpretación de Imagen Radiográfica Asistida por Computador
6.
Int J Comput Assist Radiol Surg ; 19(4): 655-664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498132

RESUMEN

PURPOSE: Pancreatic duct dilation is associated with an increased risk of pancreatic cancer, the most lethal malignancy with the lowest 5-year relative survival rate. Automatic segmentation of the dilated pancreatic duct from contrast-enhanced CT scans would facilitate early diagnosis. However, pancreatic duct segmentation poses challenges due to its small anatomical structure and poor contrast in abdominal CT. In this work, we investigate an anatomical attention strategy to address this issue. METHODS: Our proposed anatomical attention strategy consists of two steps: pancreas localization and pancreatic duct segmentation. The coarse pancreatic mask segmentation is used to guide the fully convolutional networks (FCNs) to concentrate on the pancreas' anatomy and disregard unnecessary features. We further apply a multi-scale aggregation scheme to leverage the information from different scales. Moreover, we integrate the tubular structure enhancement as an additional input channel of FCN. RESULTS: We performed extensive experiments on 30 cases of contrast-enhanced abdominal CT volumes. To evaluate the pancreatic duct segmentation performance, we employed four measurements, including the Dice similarity coefficient (DSC), sensitivity, normalized surface distance, and 95 percentile Hausdorff distance. The average DSC achieves 55.7%, surpassing other pancreatic duct segmentation methods on single-phase CT scans only. CONCLUSIONS: We proposed an anatomical attention-based strategy for the dilated pancreatic duct segmentation. Our proposed strategy significantly outperforms earlier approaches. The attention mechanism helps to focus on the pancreas region, while the enhancement of the tubular structure enables FCNs to capture the vessel-like structure. The proposed technique might be applied to other tube-like structure segmentation tasks within targeted anatomies.


Asunto(s)
Abdomen , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Páncreas , Tomografía Computarizada por Rayos X , Conductos Pancreáticos/diagnóstico por imagen
7.
medRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961086

RESUMEN

Background: Diffuse midline gliomas (DMG) are aggressive pediatric brain tumors that are diagnosed and monitored through MRI. We developed an automatic pipeline to segment subregions of DMG and select radiomic features that predict patient overall survival (OS). Methods: We acquired diagnostic and post-radiation therapy (RT) multisequence MRI (T1, T1ce, T2, T2 FLAIR) and manual segmentations from two centers of 53 (internal cohort) and 16 (external cohort) DMG patients. We pretrained a deep learning model on a public adult brain tumor dataset, and finetuned it to automatically segment tumor core (TC) and whole tumor (WT) volumes. PyRadiomics and sequential feature selection were used for feature extraction and selection based on the segmented volumes. Two machine learning models were trained on our internal cohort to predict patient 1-year survival from diagnosis. One model used only diagnostic tumor features and the other used both diagnostic and post-RT features. Results: For segmentation, Dice score (mean [median]±SD) was 0.91 (0.94)±0.12 and 0.74 (0.83)±0.32 for TC, and 0.88 (0.91)±0.07 and 0.86 (0.89)±0.06 for WT for internal and external cohorts, respectively. For OS prediction, accuracy was 77% and 81% at time of diagnosis, and 85% and 78% post-RT for internal and external cohorts, respectively. Homogeneous WT intensity in baseline T2 FLAIR and larger post-RT TC/WT volume ratio indicate shorter OS. Conclusions: Machine learning analysis of MRI radiomics has potential to accurately and non-invasively predict which pediatric patients with DMG will survive less than one year from the time of diagnosis to provide patient stratification and guide therapy.

8.
J Imaging Inform Med ; 37(2): 589-600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38343228

RESUMEN

Prompt and correct detection of pulmonary tuberculosis (PTB) is critical in preventing its spread. We aimed to develop a deep learning-based algorithm for detecting PTB on chest X-ray (CXRs) in the emergency department. This retrospective study included 3498 CXRs acquired from the National Taiwan University Hospital (NTUH). The images were chronologically split into a training dataset, NTUH-1519 (images acquired during the years 2015 to 2019; n = 2144), and a testing dataset, NTUH-20 (images acquired during the year 2020; n = 1354). Public databases, including the NIH ChestX-ray14 dataset (model training; 112,120 images), Montgomery County (model testing; 138 images), and Shenzhen (model testing; 662 images), were also used in model development. EfficientNetV2 was the basic architecture of the algorithm. Images from ChestX-ray14 were employed for pseudo-labelling to perform semi-supervised learning. The algorithm demonstrated excellent performance in detecting PTB (area under the receiver operating characteristic curve [AUC] 0.878, 95% confidence interval [CI] 0.854-0.900) in NTUH-20. The algorithm showed significantly better performance in posterior-anterior (PA) CXR (AUC 0.940, 95% CI 0.912-0.965, p-value < 0.001) compared with anterior-posterior (AUC 0.782, 95% CI 0.644-0.897) or portable anterior-posterior (AUC 0.869, 95% CI 0.814-0.918) CXR. The algorithm accurately detected cases of bacteriologically confirmed PTB (AUC 0.854, 95% CI 0.823-0.883). Finally, the algorithm tested favourably in Montgomery County (AUC 0.838, 95% CI 0.765-0.904) and Shenzhen (AUC 0.806, 95% CI 0.771-0.839). A deep learning-based algorithm could detect PTB on CXR with excellent performance, which may help shorten the interval between detection and airborne isolation for patients with PTB.

9.
J Imaging Inform Med ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980623

RESUMEN

Malposition of a nasogastric tube (NGT) can lead to severe complications. We aimed to develop a computer-aided detection (CAD) system to localize NGTs and detect NGT malposition on portable chest X-rays (CXRs). A total of 7378 portable CXRs were retrospectively retrieved from two hospitals between 2015 and 2020. All CXRs were annotated with pixel-level labels for NGT localization and image-level labels for NGT presence and malposition. In the CAD system, DeepLabv3 + with backbone ResNeSt50 and DenseNet121 served as the model architecture for segmentation and classification models, respectively. The CAD system was tested on images from chronologically different datasets (National Taiwan University Hospital (National Taiwan University Hospital)-20), geographically different datasets (National Taiwan University Hospital-Yunlin Branch (YB)), and the public CLiP dataset. For the segmentation model, the Dice coefficients indicated accurate delineation of the NGT course (National Taiwan University Hospital-20: 0.665, 95% confidence interval (CI) 0.630-0.696; National Taiwan University Hospital-Yunlin Branch: 0.646, 95% CI 0.614-0.678). The distance between the predicted and ground-truth NGT tips suggested accurate tip localization (National Taiwan University Hospital-20: 1.64 cm, 95% CI 0.99-2.41; National Taiwan University Hospital-Yunlin Branch: 2.83 cm, 95% CI 1.94-3.76). For the classification model, NGT presence was detected with high accuracy (area under the receiver operating characteristic curve (AUC): National Taiwan University Hospital-20: 0.998, 95% CI 0.995-1.000; National Taiwan University Hospital-Yunlin Branch: 0.998, 95% CI 0.995-1.000; CLiP dataset: 0.991, 95% CI 0.990-0.992). The CAD system also detected NGT malposition with high accuracy (AUC: National Taiwan University Hospital-20: 0.964, 95% CI 0.917-1.000; National Taiwan University Hospital-Yunlin Branch: 0.991, 95% CI 0.970-1.000) and detected abnormal nasoenteric tube positions with favorable performance (AUC: 0.839, 95% CI 0.807-0.869). The CAD system accurately localized NGTs and detected NGT malposition, demonstrating excellent potential for external generalizability.

10.
Med Image Anal ; 95: 103207, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776843

RESUMEN

The lack of annotated datasets is a major bottleneck for training new task-specific supervised machine learning models, considering that manual annotation is extremely expensive and time-consuming. To address this problem, we present MONAI Label, a free and open-source framework that facilitates the development of applications based on artificial intelligence (AI) models that aim at reducing the time required to annotate radiology datasets. Through MONAI Label, researchers can develop AI annotation applications focusing on their domain of expertise. It allows researchers to readily deploy their apps as services, which can be made available to clinicians via their preferred user interface. Currently, MONAI Label readily supports locally installed (3D Slicer) and web-based (OHIF) frontends and offers two active learning strategies to facilitate and speed up the training of segmentation algorithms. MONAI Label allows researchers to make incremental improvements to their AI-based annotation application by making them available to other researchers and clinicians alike. Additionally, MONAI Label provides sample AI-based interactive and non-interactive labeling applications, that can be used directly off the shelf, as plug-and-play to any given dataset. Significant reduced annotation times using the interactive model can be observed on two public datasets.


Asunto(s)
Inteligencia Artificial , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Algoritmos , Programas Informáticos
11.
Abdom Radiol (NY) ; 49(5): 1545-1556, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38512516

RESUMEN

OBJECTIVE: Automated methods for prostate segmentation on MRI are typically developed under ideal scanning and anatomical conditions. This study evaluates three different prostate segmentation AI algorithms in a challenging population of patients with prior treatments, variable anatomic characteristics, complex clinical history, or atypical MRI acquisition parameters. MATERIALS AND METHODS: A single institution retrospective database was queried for the following conditions at prostate MRI: prior prostate-specific oncologic treatment, transurethral resection of the prostate (TURP), abdominal perineal resection (APR), hip prosthesis (HP), diversity of prostate volumes (large ≥ 150 cc, small ≤ 25 cc), whole gland tumor burden, magnet strength, noted poor quality, and various scanners (outside/vendors). Final inclusion criteria required availability of axial T2-weighted (T2W) sequence and corresponding prostate organ segmentation from an expert radiologist. Three previously developed algorithms were evaluated: (1) deep learning (DL)-based model, (2) commercially available shape-based model, and (3) federated DL-based model. Dice Similarity Coefficient (DSC) was calculated compared to expert. DSC by model and scan factors were evaluated with Wilcox signed-rank test and linear mixed effects (LMER) model. RESULTS: 683 scans (651 patients) met inclusion criteria (mean prostate volume 60.1 cc [9.05-329 cc]). Overall DSC scores for models 1, 2, and 3 were 0.916 (0.707-0.971), 0.873 (0-0.997), and 0.894 (0.025-0.961), respectively, with DL-based models demonstrating significantly higher performance (p < 0.01). In sub-group analysis by factors, Model 1 outperformed Model 2 (all p < 0.05) and Model 3 (all p < 0.001). Performance of all models was negatively impacted by prostate volume and poor signal quality (p < 0.01). Shape-based factors influenced DL models (p < 0.001) while signal factors influenced all (p < 0.001). CONCLUSION: Factors affecting anatomical and signal conditions of the prostate gland can adversely impact both DL and non-deep learning-based segmentation models.


Asunto(s)
Algoritmos , Inteligencia Artificial , Imagen por Resonancia Magnética , Neoplasias de la Próstata , Humanos , Masculino , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Interpretación de Imagen Asistida por Computador/métodos , Persona de Mediana Edad , Anciano , Próstata/diagnóstico por imagen , Aprendizaje Profundo
12.
Med Image Anal ; 95: 103206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776844

RESUMEN

The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characteristics across mammography systems, models built using data from one system do not generalize well to other systems. Though federated learning (FL) has emerged as a way to improve the generalizability of AI without the need to share data, the best way to preserve features from all training data during FL is an active area of research. To explore FL methodology, the breast density classification FL challenge was hosted in partnership with the American College of Radiology, Harvard Medical Schools' Mass General Brigham, University of Colorado, NVIDIA, and the National Institutes of Health National Cancer Institute. Challenge participants were able to submit docker containers capable of implementing FL on three simulated medical facilities, each containing a unique large mammography dataset. The breast density FL challenge ran from June 15 to September 5, 2022, attracting seven finalists from around the world. The winning FL submission reached a linear kappa score of 0.653 on the challenge test data and 0.413 on an external testing dataset, scoring comparably to a model trained on the same data in a central location.


Asunto(s)
Algoritmos , Densidad de la Mama , Neoplasias de la Mama , Mamografía , Humanos , Femenino , Mamografía/métodos , Neoplasias de la Mama/diagnóstico por imagen , Aprendizaje Automático
13.
Radiology ; 268(3): 752-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23687175

RESUMEN

PURPOSE: To perform external validation of a computer-assisted registration algorithm for prone and supine computed tomographic (CT) colonography and to compare the results with those of an existing centerline method. MATERIALS AND METHODS: All contributing centers had institutional review board approval; participants provided informed consent. A validation sample of CT colonographic examinations of 51 patients with 68 polyps (6-55 mm) was selected from a publicly available, HIPAA compliant, anonymized archive. No patients were excluded because of poor preparation or inadequate distension. Corresponding prone and supine polyp coordinates were recorded, and endoluminal surfaces were registered automatically by using a computer algorithm. Two observers independently scored three-dimensional endoluminal polyp registration success. Results were compared with those obtained by using the normalized distance along the colonic centerline (NDACC) method. Pairwise Wilcoxon signed rank tests were used to compare gross registration error and McNemar tests were used to compare polyp conspicuity. RESULTS: Registration was possible in all 51 patients, and 136 paired polyp coordinates were generated (68 polyps) to test the algorithm. Overall mean three-dimensional polyp registration error (mean ± standard deviation, 19.9 mm ± 20.4) was significantly less than that for the NDACC method (mean, 27.4 mm ± 15.1; P = .001). Accuracy was unaffected by colonic segment (P = .76) or luminal collapse (P = .066). During endoluminal review by two observers (272 matching tasks, 68 polyps, prone to supine and supine to prone coordinates), 223 (82%) polyp matches were visible (120° field of view) compared with just 129 (47%) when the NDACC method was used (P < .001). By using multiplanar visualization, 48 (70%) polyps were visible after scrolling ± 15 mm in any multiplanar axis compared with 16 (24%) for NDACC (P < .001). CONCLUSION: Computer-assisted registration is more accurate than the NDACC method for mapping the endoluminal surface and matching the location of polyps in corresponding prone and supine CT colonographic acquisitions.


Asunto(s)
Algoritmos , Pólipos del Colon/diagnóstico por imagen , Pólipos del Colon/epidemiología , Colonografía Tomográfica Computarizada/estadística & datos numéricos , Posicionamiento del Paciente/estadística & datos numéricos , Intensificación de Imagen Radiográfica/métodos , Técnica de Sustracción/estadística & datos numéricos , Puntos Anatómicos de Referencia/diagnóstico por imagen , Humanos , Prevalencia , Posición Prona , Posición Supina , Estados Unidos/epidemiología
14.
IEEE Trans Med Imaging ; 42(7): 2044-2056, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37021996

RESUMEN

Federated learning (FL) allows the collaborative training of AI models without needing to share raw data. This capability makes it especially interesting for healthcare applications where patient and data privacy is of utmost concern. However, recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data. In this work, we show that these attacks presented in the literature are impractical in FL use-cases where the clients' training involves updating the Batch Normalization (BN) statistics and provide a new baseline attack that works for such scenarios. Furthermore, we present new ways to measure and visualize potential data leakage in FL. Our work is a step towards establishing reproducible methods of measuring data leakage in FL and could help determine the optimal tradeoffs between privacy-preserving techniques, such as differential privacy, and model accuracy based on quantifiable metrics.


Asunto(s)
Redes Neurales de la Computación , Aprendizaje Automático Supervisado , Humanos , Privacidad , Informática Médica
15.
Artículo en Inglés | MEDLINE | ID: mdl-38083430

RESUMEN

Children with optic pathway gliomas (OPGs), a low-grade brain tumor associated with neurofibromatosis type 1 (NF1-OPG), are at risk for permanent vision loss. While OPG size has been associated with vision loss, it is unclear how changes in size, shape, and imaging features of OPGs are associated with the likelihood of vision loss. This paper presents a fully automatic framework for accurate prediction of visual acuity loss using multi-sequence magnetic resonance images (MRIs). Our proposed framework includes a transformer-based segmentation network using transfer learning, statistical analysis of radiomic features, and a machine learning method for predicting vision loss. Our segmentation network was evaluated on multi-sequence MRIs acquired from 75 pediatric subjects with NF1-OPG and obtained an average Dice similarity coefficient of 0.791. The ability to predict vision loss was evaluated on a subset of 25 subjects with ground truth using cross-validation and achieved an average accuracy of 0.8. Analyzing multiple MRI features appear to be good indicators of vision loss, potentially permitting early treatment decisions.Clinical relevance- Accurately determining which children with NF1-OPGs are at risk and hence require preventive treatment before vision loss remains challenging, towards this we present a fully automatic deep learning-based framework for vision outcome prediction, potentially permitting early treatment decisions.


Asunto(s)
Neurofibromatosis 1 , Glioma del Nervio Óptico , Humanos , Niño , Glioma del Nervio Óptico/complicaciones , Glioma del Nervio Óptico/diagnóstico por imagen , Glioma del Nervio Óptico/patología , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/diagnóstico por imagen , Neurofibromatosis 1/patología , Imagen por Resonancia Magnética/métodos , Trastornos de la Visión , Agudeza Visual
16.
Health Informatics J ; 29(4): 14604582231207744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37864543

RESUMEN

Cross-institution collaborations are constrained by data-sharing challenges. These challenges hamper innovation, particularly in artificial intelligence, where models require diverse data to ensure strong performance. Federated learning (FL) solves data-sharing challenges. In typical collaborations, data is sent to a central repository where models are trained. With FL, models are sent to participating sites, trained locally, and model weights aggregated to create a master model with improved performance. At the 2021 Radiology Society of North America's (RSNA) conference, a panel was conducted titled "Accelerating AI: How Federated Learning Can Protect Privacy, Facilitate Collaboration and Improve Outcomes." Two groups shared insights: researchers from the EXAM study (EMC CXR AI Model) and members of the National Cancer Institute's Early Detection Research Network's (EDRN) pancreatic cancer working group. EXAM brought together 20 institutions to create a model to predict oxygen requirements of patients seen in the emergency department with COVID-19 symptoms. The EDRN collaboration is focused on improving outcomes for pancreatic cancer patients through earlier detection. This paper describes major insights from the panel, including direct quotes. The panelists described the impetus for FL, the long-term potential vision of FL, challenges faced in FL, and the immediate path forward for FL.


Asunto(s)
Inteligencia Artificial , Neoplasias Pancreáticas , Humanos , Privacidad , Aprendizaje , Neoplasias Pancreáticas
17.
Radiol Artif Intell ; 4(6): e210284, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36523642

RESUMEN

Deep learning models are currently the cornerstone of artificial intelligence in medical imaging. While progress is still being made, the generic technological core of convolutional neural networks (CNNs) has had only modest innovations over the last several years, if at all. There is thus a need for improvement. More recently, transformer networks have emerged that replace convolutions with a complex attention mechanism, and they have already matched or exceeded the performance of CNNs in many tasks. Transformers need very large amounts of training data, even more than CNNs, but obtaining well-curated labeled data is expensive and difficult. A possible solution to this issue would be transfer learning with pretraining on a self-supervised task using very large amounts of unlabeled medical data. This pretrained network could then be fine-tuned on specific medical imaging tasks with relatively modest data requirements. The authors believe that the availability of a large-scale, three-dimension-capable, and extensively pretrained transformer model would be highly beneficial to the medical imaging and research community. In this article, authors discuss the challenges and obstacles of training a very large medical imaging transformer, including data needs, biases, training tasks, network architecture, privacy concerns, and computational requirements. The obstacles are substantial but not insurmountable for resourceful collaborative teams that may include academia and information technology industry partners. © RSNA, 2022 Keywords: Computer-aided Diagnosis (CAD), Informatics, Transfer Learning, Convolutional Neural Network (CNN).

18.
Int J Comput Assist Radiol Surg ; 17(2): 343-354, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34951681

RESUMEN

PURPOSE: Pancreatic duct dilation can be considered an early sign of pancreatic ductal adenocarcinoma (PDAC). However, there is little existing research focused on dilated pancreatic duct segmentation as a potential screening tool for people without PDAC. Dilated pancreatic duct segmentation is difficult due to the lack of readily available labeled data and strong voxel imbalance between the pancreatic duct region and other regions. To overcome these challenges, we propose a two-step approach for dilated pancreatic duct segmentation from abdominal computed tomography (CT) volumes using fully convolutional networks (FCNs). METHODS: Our framework segments the pancreatic duct in a cascaded manner. The pancreatic duct occupies a tiny portion of abdominal CT volumes. Therefore, to concentrate on the pancreas regions, we use a public pancreas dataset to train an FCN to generate an ROI covering the pancreas and use a 3D U-Net-like FCN for coarse pancreas segmentation. To further improve the dilated pancreatic duct segmentation, we deploy a skip connection on each corresponding resolution level and an attention mechanism in the bottleneck layer. Moreover, we introduce a combined loss function based on Dice loss and Focal loss. Random data augmentation is adopted throughout the experiments to improve the generalizability of the model. RESULTS: We manually created a dilated pancreatic duct dataset with semi-automated annotation tools. Experimental results showed that our proposed framework is practical for dilated pancreatic duct segmentation. The average Dice score and sensitivity were 49.9% and 51.9%, respectively. These results show the potential of our approach as a clinical screening tool. CONCLUSIONS: We investigate an automated framework for dilated pancreatic duct segmentation. The cascade strategy effectively improved the segmentation performance of the pancreatic duct. Our modifications to the FCNs together with random data augmentation and the proposed combined loss function facilitate automated segmentation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Abdomen , Humanos , Páncreas , Conductos Pancreáticos/diagnóstico por imagen
19.
Med Image Anal ; 82: 102605, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36156419

RESUMEN

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/diagnóstico por imagen , Inteligencia Artificial , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen
20.
Med Phys ; 38(6): 3077-89, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21815381

RESUMEN

PURPOSE: Computed tomographic (CT) colonography is a relatively new technique for detecting bowel cancer or potentially precancerous polyps. CT scanning is combined with three-dimensional (3D) image reconstruction to produce a virtual endoluminal representation similar to optical colonoscopy. Because retained fluid and stool can mimic pathology, CT data are acquired with the bowel cleansed and insufflated with gas and patient in both prone and supine positions. Radiologists then match visually endoluminal locations between the two acquisitions in order to determine whether apparent pathology is real or not. This process is hindered by the fact that the colon, essentially a long tube, can undergo considerable deformation between acquisitions. The authors present a novel approach to automatically establish spatial correspondence between prone and supine endoluminal colonic surfaces after surface parameterization, even in the case of local colon collapse. METHODS: The complexity of the registration task was reduced from a 3D to a 2D problem by mapping the surfaces extracted from prone and supine CT colonography onto a cylindrical parameterization. A nonrigid cylindrical registration was then performed to align the full colonic surfaces. The curvature information from the original 3D surfaces was used to determine correspondence. The method can also be applied to cases with regions of local colonic collapse by ignoring the collapsed regions during the registration. RESULTS: Using a development set, suitable parameters were found to constrain the cylindrical registration method. Then, the same registration parameters were applied to a different set of 13 validation cases, consisting of 8 fully distended cases and 5 cases exhibiting multiple colonic collapses. All polyps present were well aligned, with a mean (+/- std. dev.) registration error of 5.7 (+/- 3.4) mm. An additional set of 1175 reference points on haustral folds spread over the full endoluminal colon surfaces resulted in an error of 7.7 (+/- 7.4) mm. Here, 82% of folds were aligned correctly after registration with a further 15% misregistered by just onefold. CONCLUSIONS: The proposed method reduces the 3D registration task to a cylindrical registration representing the endoluminal surface of the colon. Our algorithm uses surface curvature information as a similarity measure to drive registration to compensate for the large colorectal deformations that occur between prone and supine data acquisitions. The method has the potential to both enhance polyp detection and decrease the radiologist's interpretation time.


Asunto(s)
Colon/diagnóstico por imagen , Colonografía Tomográfica Computarizada/métodos , Colon/patología , Pólipos del Colon/diagnóstico por imagen , Pólipos del Colon/patología , Humanos , Posición Prona , Reproducibilidad de los Resultados , Posición Supina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA