Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107445, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844137

RESUMEN

Fibrillin microfibrils play a critical role in the formation of elastic fibers, tissue/organ development, and cardiopulmonary function. These microfibrils not only provide structural support and flexibility to tissues, but they also regulate growth factor signaling through a plethora of microfibril-binding proteins in the extracellular space. Mutations in fibrillins are associated with human diseases affecting cardiovascular, pulmonary, skeletal, and ocular systems. Fibrillins consist of up to 47 epidermal growth factor-like repeats, of which more than half are modified by protein O-glucosyltransferase 2 (POGLUT2) and/or POGLUT3. Loss of these modifications reduces secretion of N-terminal fibrillin constructs overexpressed in vitro. Here, we investigated the role of POGLUT2 and POGLUT3 in vivo using a Poglut2/3 double knockout (DKO) mouse model. Blocking O-glucosylation caused neonatal death with skeletal, pulmonary, and eye defects reminiscent of fibrillin/elastin mutations. Proteomic analyses of DKO dermal fibroblast medium and extracellular matrix provided evidence that fibrillins were more sensitive to loss of O-glucose compared to other POGLUT2/3 substrates. This conclusion was supported by immunofluorescent analyses of late gestation DKO lungs where FBN levels were reduced and microfibrils appeared fragmented in the pulmonary arteries and veins, bronchioles, and developing saccules. Defects in fibrillin microfibrils likely contributed to impaired elastic fiber formation and histological changes observed in DKO lung blood vessels, bronchioles, and saccules. Collectively, these results highlight the importance of POGLUT2/3-mediated O-glucosylation in vivo and open the possibility that O-glucose modifications on fibrillin influence microfibril assembly and or protein interactions in the ECM environment.

2.
Dev Dyn ; 253(2): 233-254, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688792

RESUMEN

BACKGROUND: Latent TGFß binding protein-2 (LTBP2) is a fibrillin 1 binding component of the microfibril. LTBP2 is the only LTBP protein that does not bind any isoforms of TGFß, although it may interfere with the function of other LTBPs or interact with other signaling pathways. RESULTS: Here, we investigate mice lacking Ltbp2 (Ltbp2-/- ) and identify multiple phenotypes that impact bodyweight and fat mass, and affect bone and skin development. The alterations in skin and bone development are particularly noteworthy since the strength of these tissues is differentially affected by loss of Ltbp2. Interestingly, some tissues that express high levels of Ltbp2, such as the aorta and lung, do not have a developmental or homeostatic phenotype. CONCLUSIONS: Analysis of these mice show that LTBP2 has complex effects on development through direct effects on the extracellular matrix (ECM) or on signaling pathways that are known to regulate the ECM.


Asunto(s)
Proteínas Portadoras , Matriz Extracelular , Animales , Ratones , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Matriz Extracelular/metabolismo , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo , Isoformas de Proteínas/metabolismo , Unión Proteica
3.
Proc Natl Acad Sci U S A ; 117(50): 31871-31881, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257567

RESUMEN

TAT-RasGAP317-326 is a cell-penetrating peptide-based construct with anticancer and antimicrobial activities. This peptide kills a subset of cancer cells in a manner that does not involve known programmed cell death pathways. Here we have elucidated the mode of action allowing TAT-RasGAP317-326 to kill cells. This peptide binds and disrupts artificial membranes containing lipids typically enriched in the inner leaflet of the plasma membrane, such as phosphatidylinositol-bisphosphate (PIP2) and phosphatidylserine (PS). Decreasing the amounts of PIP2 in cells renders them more resistant to TAT-RasGAP317-326, while reducing the ability of cells to repair their plasma membrane makes them more sensitive to the peptide. The W317A TAT-RasGAP317-326 point mutant, known to have impaired killing activities, has reduced abilities to bind and permeabilize PIP2- and PS-containing membranes and to translocate through biomembranes, presumably because of a higher propensity to adopt an α-helical state. This work shows that TAT-RasGAP317-326 kills cells via a form of necrosis that relies on the physical disruption of the plasma membrane once the peptide targets specific phospholipids found on the cytosolic side of the plasma membrane.


Asunto(s)
Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Proteínas Activadoras de GTPasa/farmacología , Fragmentos de Péptidos/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Cricetulus , Proteínas Activadoras de GTPasa/uso terapéutico , Células HeLa , Humanos , Liposomas/metabolismo , Liposomas/ultraestructura , Microscopía Electrónica , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/uso terapéutico
4.
J Am Soc Nephrol ; 33(1): 155-173, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758982

RESUMEN

BACKGROUND: Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. METHODS: We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail, while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion-beam scanning electron microscopy, and machine learning image segmentation. RESULTS: Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures, located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. CONCLUSIONS: Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Imagenología Tridimensional/métodos , Aprendizaje Automático , Microscopía Electrónica , Podocitos/ultraestructura , Animales , Ratones , Ratones Endogámicos C57BL , Modelos Animales
5.
Arterioscler Thromb Vasc Biol ; 41(12): 2890-2905, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587758

RESUMEN

OBJECTIVE: Using a mouse model of Eln (elastin) insufficiency that spontaneously develops neointima in the ascending aorta, we sought to understand the origin and phenotypic heterogeneity of smooth muscle cells (SMCs) contributing to intimal hyperplasia. We were also interested in exploring how vascular cells adapt to the absence of Eln. Approach and Results: We used single-cell sequencing together with lineage-specific cell labeling to identify neointimal cell populations in a noninjury, genetic model of neointimal formation. Inactivating Eln production in vascular SMCs results in rapid intimal hyperplasia around breaks in the ascending aorta's internal elastic lamina. Using lineage-specific Cre drivers to both lineage mark and inactivate Eln expression in the secondary heart field and neural crest aortic SMCs, we found that cells with a secondary heart field lineage are significant contributors to neointima formation. We also identified a small population of secondary heart field-derived SMCs underneath and adjacent to the internal elastic lamina. Within the neointima of SMC-Eln knockout mice, 2 unique SMC populations were identified that are transcriptionally different from other SMCs. While these cells had a distinct gene signature, they expressed several genes identified in other studies of neointimal lesions, suggesting that some mechanisms underlying neointima formation in Eln insufficiency are shared with adult vessel injury models. CONCLUSIONS: These results highlight the unique developmental origin and transcriptional signature of cells contributing to neointima in the ascending aorta. Our findings also show that the absence of Eln, or changes in elastic fiber integrity, influences the SMC biological niche in ways that lead to altered cell phenotypes.


Asunto(s)
Elastina/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Animales , Aorta/metabolismo , Diferenciación Celular , Matriz Extracelular/metabolismo , Femenino , Masculino , Ratones Endogámicos , Modelos Animales
6.
Proc Natl Acad Sci U S A ; 116(37): 18445-18454, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31455733

RESUMEN

A phase-separated, liquid-like organelle called the pyrenoid mediates CO2 fixation in the chloroplasts of nearly all eukaryotic algae. While most algae have 1 pyrenoid per chloroplast, here we describe a mutant in the model alga Chlamydomonas that has on average 10 pyrenoids per chloroplast. Characterization of the mutant leads us to propose a model where multiple pyrenoids are favored by an increase in the surface area of the starch sheath that surrounds and binds to the liquid-like pyrenoid matrix. We find that the mutant's phenotypes are due to disruption of a gene, which we call StArch Granules Abnormal 1 (SAGA1) because starch sheath granules, or plates, in mutants lacking SAGA1 are more elongated and thinner than those of wild type. SAGA1 contains a starch binding motif, suggesting that it may directly regulate starch sheath morphology. SAGA1 localizes to multiple puncta and streaks in the pyrenoid and physically interacts with the small and large subunits of the carbon-fixing enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), a major component of the liquid-like pyrenoid matrix. Our findings suggest a biophysical mechanism by which starch sheath morphology affects pyrenoid number and CO2-concentrating mechanism function, advancing our understanding of the structure and function of this biogeochemically important organelle. More broadly, we propose that the number of phase-separated organelles can be regulated by imposing constraints on their surface area.


Asunto(s)
Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/metabolismo , Plastidios/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Almidón/química , Carbono/metabolismo , Ciclo del Carbono , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/genética , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Circ Res ; 125(11): 1006-1018, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31590613

RESUMEN

RATIONALE: Elastin is an important ECM (extracellular matrix) protein in large and small arteries. Vascular smooth muscle cells (SMCs) produce the layered elastic laminae found in elastic arteries but synthesize little elastin in muscular arteries. However, muscular arteries have a well-defined internal elastic lamina (IEL) that separates endothelial cells (ECs) from SMCs. The extent to which ECs contribute elastin to the IEL is unknown. OBJECTIVE: To use targeted elastin (Eln) deletion in mice to explore the relative contributions of SMCs and ECs to elastic laminae formation in different arteries. METHODS AND RESULTS: We used SMC- and EC-specific Cre recombinase transgenes with a novel floxed Eln allele to focus gene inactivation in mice. Inactivation of Eln in SMCs using Sm22aCre resulted in depletion of elastic laminae in the arterial wall with the exception of the IEL and SMC clusters in the outer media near the adventitia. Inactivation of elastin in ECs using Tie2Cre or Cdh5Cre resulted in normal medial elastin and a typical IEL in elastic arteries. In contrast, the IEL was absent or severely disrupted in muscular arteries. Interruptions in the IEL resulted in neointimal formation in the ascending aorta but not in muscular arteries. CONCLUSIONS: Combined with lineage-specific fate mapping systems, our knockout results document an unexpected heterogeneity in vascular cells that produce the elastic laminae. SMCs and ECs can independently form an IEL in most elastic arteries, whereas ECs are the major source of elastin for the IEL in muscular and resistance arteries. Neointimal formation at IEL disruptions in the ascending aorta confirms that the IEL is a critical physical barrier between SMCs and ECs in the large elastic arteries. Our studies provide new information about how SMCs and ECs contribute elastin to the arterial wall and how local elastic laminae defects may contribute to cardiovascular disease.


Asunto(s)
Tejido Elástico/metabolismo , Elastina/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Presión Sanguínea , Linaje de la Célula , Proliferación Celular , Tejido Elástico/crecimiento & desarrollo , Tejido Elástico/ultraestructura , Elastina/deficiencia , Elastina/genética , Células Endoteliales/ultraestructura , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/crecimiento & desarrollo , Músculo Liso Vascular/ultraestructura , Miocitos del Músculo Liso/ultraestructura , Neointima , Transducción de Señal
8.
Plant Cell ; 29(8): 2047-2070, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28765511

RESUMEN

The ecological prominence of diatoms in the ocean environment largely results from their superior competitive ability for dissolved nitrate (NO3-). To investigate the cellular and genetic basis of diatom NO3- assimilation, we generated a knockout in the nitrate reductase gene (NR-KO) of the model pennate diatom Phaeodactylum tricornutum In NR-KO cells, N-assimilation was abolished although NO3- transport remained intact. Unassimilated NO3- accumulated in NR-KO cells, resulting in swelling and associated changes in biochemical composition and physiology. Elevated expression of genes encoding putative vacuolar NO3- chloride channel transporters plus electron micrographs indicating enlarged vacuoles suggested vacuolar storage of NO3- Triacylglycerol concentrations in the NR-KO cells increased immediately following the addition of NO3-, and these increases coincided with elevated gene expression of key triacylglycerol biosynthesis components. Simultaneously, induction of transcripts encoding proteins involved in thylakoid membrane lipid recycling suggested more abrupt repartitioning of carbon resources in NR-KO cells compared with the wild type. Conversely, ribosomal structure and photosystem genes were immediately deactivated in NR-KO cells following NO3- addition, followed within hours by deactivation of genes encoding enzymes for chlorophyll biosynthesis and carbon fixation and metabolism. N-assimilation pathway genes respond uniquely, apparently induced simultaneously by both NO3- replete and deplete conditions.


Asunto(s)
Ciclo del Carbono , Diatomeas/enzimología , Diatomeas/metabolismo , Técnicas de Inactivación de Genes , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Transporte Biológico/efectos de los fármacos , Vías Biosintéticas/genética , Carbono/metabolismo , Ciclo del Carbono/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clorofila/biosíntesis , Diatomeas/fisiología , Diatomeas/ultraestructura , Ésteres/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Nitratos/farmacología , Fotosíntesis/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Tilacoides/efectos de los fármacos , Tilacoides/metabolismo , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética , Triglicéridos/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(27): 7673-8, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27335457

RESUMEN

To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the difficulty in extracting molecular information from in vivo experiments and the absence of a validation system for in vitro experiments. Here, we have created a minimal cell of the green alga Chlamydomonas reinhardtii that is able to undergo NPQ. We show that LHCII, the main light harvesting complex of algae, cannot switch to a quenched conformation in response to pH changes by itself. Instead, a small amount of the protein LHCSR1 (light-harvesting complex stress related 1) is able to induce a large, fast, and reversible pH-dependent quenching in an LHCII-containing membrane. These results strongly suggest that LHCSR1 acts as pH sensor and that it modulates the excited state lifetimes of a large array of LHCII, also explaining the NPQ observed in the LHCSR3-less mutant. The possible quenching mechanisms are discussed.


Asunto(s)
Chlamydomonas reinhardtii/efectos de la radiación , Complejos de Proteína Captadores de Luz/efectos de la radiación , Fluorescencia , Concentración de Iones de Hidrógeno
10.
Proc Natl Acad Sci U S A ; 113(21): 5958-63, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27166422

RESUMEN

Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency.


Asunto(s)
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/enzimología , Orgánulos/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Chlamydomonas reinhardtii/genética , Orgánulos/genética , Ribulosa-Bifosfato Carboxilasa/genética
11.
Photosynth Res ; 135(1-3): 177-189, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28547584

RESUMEN

Oxygenic phototrophs typically utilize visible light (400-700 nm) to drive photosynthesis. However, a large fraction of the energy in sunlight is contained in the far-red region, which encompasses light beyond 700 nm. In nature, certain niche environments contain high levels of this far-red light due to filtering by other phototrophs, and in these environments, organisms with photosynthetic antenna systems adapted to absorbing far-red light are able to thrive. We used selective far-red light conditions to isolate such organisms in environmental samples. One cultured organism, the Eustigmatophyte alga Forest Park Isolate 5 (FP5), is able to absorb far-red light using a chlorophyll (Chl) a-containing antenna complex, and is able to grow under solely far-red light. Here we characterize the antenna system from this organism, which is able to shift the absorption of Chl a to >705 nm.


Asunto(s)
Agua Dulce , Luz , Plantas/efectos de la radiación , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Complejos Multiproteicos/aislamiento & purificación , Filogenia , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/aislamiento & purificación , Plantas/ultraestructura , Espectrometría de Fluorescencia
12.
J Am Soc Nephrol ; 28(1): 106-117, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27151920

RESUMEN

The tight junction (TJ) has a key role in regulating paracellular permeability to water and solutes in the kidney. However, the functional role of the TJ in the glomerular podocyte is unclear. In diabetic nephropathy, the gene expression of claudins, in particular claudin-1, is markedly upregulated in the podocyte, accompanied by a tighter filtration slit and the appearance of TJ-like structures between the foot processes. However, there is no definitive evidence to show slit diaphragm (SD) to TJ transition in vivo Here, we report the generation of a claudin-1 transgenic mouse model with doxycycline-inducible transgene expression specifically in the glomerular podocyte. We found that induction of claudin-1 gene expression in mature podocytes caused profound proteinuria, and with deep-etching freeze-fracture electron microscopy, we resolved the ultrastructural change in the claudin-1-induced SD-TJ transition. Notably, immunolabeling of kidney proteins revealed that claudin-1 induction destabilized the SD protein complex in podocytes, with significantly reduced expression and altered localization of nephrin and podocin proteins. Mechanistically, claudin-1 interacted with both nephrin and podocin through cis- and trans-associations in cultured cells. Furthermore, the rat puromycin aminonucleoside nephrosis model, previously suspected of undergoing SD-TJ transition, exhibited upregulated expression levels of claudin-1 mRNA and protein in podocytes. Together, our data attest to the novel concept that claudins and the TJ have essential roles in podocyte pathophysiology and that claudin interactions with SD components may facilitate SD-TJ transition that appears to be common to many nephrotic conditions.


Asunto(s)
Claudina-1/biosíntesis , Podocitos/metabolismo , Podocitos/ultraestructura , Proteinuria/etiología , Uniones Estrechas/patología , Animales , Glomérulos Renales/citología , Masculino , Ratas , Ratas Sprague-Dawley
13.
Environ Microbiol ; 19(8): 3219-3234, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28585420

RESUMEN

Bathycoccus and Ostreococcus are broadly distributed marine picoprasinophyte algae. We enumerated small phytoplankton using flow cytometry and qPCR assays for phylogenetically distinct Bathycoccus clades BI and BII and Ostreococcus clades OI and OII. Among 259 photic-zone samples from transects and time-series, Ostreococcus maxima occurred in the North Pacific coastal upwelling for OI (36 713 ± 1485 copies ml-1 ) and the Kuroshio Front for OII (50 189 ± 561 copies ml-1 ) and the two overlapped only in frontal regions. The Bathycoccus overlapped more often with maxima along Line-P for BI (10 667 ± 1299 copies ml-1 ) and the tropical Atlantic for BII (4125 ± 339 copies ml-1 ). Only BII and OII were detected at warm oligotrophic sites, accounting for 34 ± 13% of 1589 ± 448 eukaryotic phytoplankton cells ml-1 (annual average) at Station ALOHA's deep chlorophyll maximum. Significant distributional and molecular differences lead us to propose that Bathycoccus clade BII represents a separate species which tolerates higher temperature oceanic conditions than Bathycoccus prasinos (BI). Morphological differences were not evident, but quick-freeze deep-etch electron microscopy provided insight into Bathycoccus scale formation. Our results highlight the importance of quantitative seasonal abundance data for inferring ecological distributions and demonstrate significant, differential picoprasinophyte contributions in mesotrophic and open-ocean waters.


Asunto(s)
Chlorophyta/clasificación , Geografía , Fitoplancton/clasificación , Estaciones del Año , Clorofila/análisis , Ecotipo , Ambiente , Océanos y Mares , Filogenia , Agua de Mar
15.
Proc Natl Acad Sci U S A ; 111(52): 18584-9, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512528

RESUMEN

The metalloprotease ADAMTS13 cleaves von Willebrand factor (VWF) within endovascular platelet aggregates, and ADAMTS13 deficiency causes fatal microvascular thrombosis. The proximal metalloprotease (M), disintegrin-like (D), thrombospondin-1 (T), Cys-rich (C), and spacer (S) domains of ADAMTS13 recognize a cryptic site in VWF that is exposed by tensile force. Another seven T and two complement C1r/C1s, sea urchin epidermal growth factor, and bone morphogenetic protein (CUB) domains of uncertain function are C-terminal to the MDTCS domains. We find that the distal T8-CUB2 domains markedly inhibit substrate cleavage, and binding of VWF or monoclonal antibodies to distal ADAMTS13 domains relieves this autoinhibition. Small angle X-ray scattering data indicate that distal T-CUB domains interact with proximal MDTCS domains. Thus, ADAMTS13 is regulated by substrate-induced allosteric activation, which may optimize VWF cleavage under fluid shear stress in vivo. Distal domains of other ADAMTS proteases may have similar allosteric properties.


Asunto(s)
Proteínas ADAM/química , Factor de von Willebrand/química , Proteínas ADAM/sangre , Proteínas ADAM/genética , Proteína ADAMTS13 , Regulación Alostérica/fisiología , Activación Enzimática/fisiología , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
16.
Eukaryot Cell ; 14(10): 1017-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26253157

RESUMEN

Eisosomes are among the few remaining eukaryotic cellular differentations that lack a defined function(s). These trough-shaped invaginations of the plasma membrane have largely been studied in Saccharomyces cerevisiae, in which their associated proteins, including two BAR domain proteins, have been identified, and homologues have been found throughout the fungal radiation. Using quick-freeze deep-etch electron microscopy to generate high-resolution replicas of membrane fracture faces without the use of chemical fixation, we report that eisosomes are also present in a subset of red and green microalgae as well as in the cysts of the ciliate Euplotes. Eisosome assembly is closely correlated with both the presence and the nature of cell walls. Microalgal eisosomes vary extensively in topology and internal organization. Unlike fungi, their convex fracture faces can carry lineage-specific arrays of intramembranous particles, and their concave fracture faces usually display fine striations, also seen in fungi, that are pitched at lineage-specific angles and, in some cases, adopt a broad-banded patterning. The conserved genes that encode fungal eisosome-associated proteins are not found in sequenced algal genomes, but we identified genes encoding two algal lineage-specific families of predicted BAR domain proteins, called Green-BAR and Red-BAR, that are candidate eisosome organizers. We propose a model for eisosome formation wherein (i) positively charged recognition patches first establish contact with target membrane regions and (ii) a (partial) unwinding of the coiled-coil conformation of the BAR domains then allows interactions between the hydrophobic faces of their amphipathic helices and the lipid phase of the inner membrane leaflet, generating the striated patterns.


Asunto(s)
Membrana Celular/fisiología , Extensiones de la Superficie Celular/ultraestructura , Hongos/fisiología , Líquenes/fisiología , Microalgas/fisiología , Extensiones de la Superficie Celular/genética , Citoplasma/fisiología , Proteínas de la Membrana/metabolismo , Estructura Terciaria de Proteína
17.
Eukaryot Cell ; 13(11): 1450-64, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25239976

RESUMEN

Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (~75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes.


Asunto(s)
Pared Celular/ultraestructura , Estramenopilos/ultraestructura , Secuencia de Aminoácidos , Aminoácidos/análisis , Organismos Acuáticos/ultraestructura , Secuencia de Bases , Microscopía Electrónica , Análisis de Secuencia de ADN , Espectroscopía Infrarroja por Transformada de Fourier , Estramenopilos/enzimología , Estramenopilos/genética
18.
Eukaryot Cell ; 13(5): 591-613, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24585881

RESUMEN

When the sta6 (starch-null) strain of the green microalga Chlamydomonas reinhardtii is nitrogen starved in acetate and then "boosted" after 2 days with additional acetate, the cells become "obese" after 8 days, with triacylglyceride (TAG)-filled lipid bodies filling their cytoplasm and chloroplasts. To assess the transcriptional correlates of this response, the sta6 strain and the starch-forming cw15 strain were subjected to RNA-Seq analysis during the 2 days prior and 2 days after the boost, and the data were compared with published reports using other strains and growth conditions. During the 2 h after the boost, ∼425 genes are upregulated ≥2-fold and ∼875 genes are downregulated ≥2-fold in each strain. Expression of a small subset of "sensitive" genes, encoding enzymes involved in the glyoxylate and Calvin-Benson cycles, gluconeogenesis, and the pentose phosphate pathway, is responsive to culture conditions and genetic background as well as to boosting. Four genes-encoding a diacylglycerol acyltransferase (DGTT2), a glycerol-3-P dehydrogenase (GPD3), and two candidate lipases (Cre03.g155250 and Cre17.g735600)-are selectively upregulated in the sta6 strain. Although the bulk rate of acetate depletion from the medium is not boost enhanced, three candidate acetate permease-encoding genes in the GPR1/FUN34/YaaH superfamily are boost upregulated, and 13 of the "sensitive" genes are strongly responsive to the cell's acetate status. A cohort of 64 autophagy-related genes is downregulated by the boost. Our results indicate that the boost serves both to avert an autophagy program and to prolong the operation of key pathways that shuttle carbon from acetate into storage lipid, the combined outcome being enhanced TAG accumulation, notably in the sta6 strain.


Asunto(s)
Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/genética , Triglicéridos/metabolismo , Acetatos/metabolismo , Tamaño de la Célula , Chlamydomonas reinhardtii/enzimología , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Lipasa/genética , Lipasa/metabolismo , Nitrógeno/metabolismo , Eliminación de Secuencia , Almidón/metabolismo
19.
Radiographics ; 34(4): E89-102, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25019451

RESUMEN

The limitations of mammography are well known and are partly related to the fact that with conventional imaging, the three-dimensional volume of the breast is imaged and presented in a two-dimensional format. Because normal breast tissue is similar in x-ray attenuation to some breast cancers, clinically relevant malignancies may be obscured by normal overlapping tissue. In addition, complex areas of normal tissue may be perceived as suspicious. The limitations of two-dimensional breast imaging lead to low sensitivity in detecting some cancers and high false-positive recall rates. Although mammographic screening has been shown to reduce breast cancer deaths by approximately 30%, controversy exists over when and how often screening mammography should occur. Digital breast tomosynthesis (DBT) is rapidly being implemented in breast imaging clinics around the world as early clinical data demonstrate that it may address some of the limitations of conventional mammography. With DBT, multiple low-dose x-ray images are acquired in an arc and reconstructed to create a three-dimensional image, thus minimizing the impact of overlapping breast tissue and improving lesion conspicuity. Early studies of screening DBT have shown decreased false-positive callback rates and increased rates of cancer detection (particularly for invasive cancers), resulting in increased sensitivity and specificity. In our clinical practice, we have completed more than 2 years of using two-view digital mammography combined with two-view DBT for all screening and select diagnostic imaging examinations (over 25,000 patients). Our experience, combined with previously published data, demonstrates that the combined use of DBT and digital mammography is associated with improved outcomes for screening and diagnostic imaging. Online supplemental material is available for this article.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagenología Tridimensional , Mamografía/métodos , Intensificación de Imagen Radiográfica , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad
20.
PLoS One ; 19(4): e0301340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625924

RESUMEN

A safe, highly immunogenic multivalent vaccine to protect against all nine serotypes of African horse sickness virus (AHSV), will revolutionise the AHS vaccine industry in endemic countries and beyond. Plant-produced AHS virus-like particles (VLPs) and soluble viral protein 2 (VP2) vaccine candidates were developed that have the potential to protect against all nine serotypes but can equally well be formulated as mono- and bi-valent formulations for localised outbreaks of specific serotypes. In the first interferon α/ß receptor knock-out (IFNAR-/-) mice trial conducted, a nine-serotype (nonavalent) vaccine administered as two pentavalent (5 µg per serotype) vaccines (VLP/VP2 combination or exclusively VP2), were directly compared to the commercially available AHS live attenuated vaccine. In a follow up trial, mice were vaccinated with an adjuvanted nine-serotype multivalent VP2 vaccine in a prime boost strategy and resulted in the desired neutralising antibody titres of 1:320, previously demonstrated to confer protective immunity in IFNAR-/- mice. In addition, the plant-produced VP2 vaccine performed favourably when compared to the commercial vaccine. Here we provide compelling data for a nonavalent VP2-based vaccine candidate, with the VP2 from each serotype being antigenically distinguishable based on LC-MS/MS and ELISA data. This is the first preclinical trial demonstrating the ability of an adjuvanted nonavalent cocktail of soluble, plant-expressed AHS VP2 proteins administered in a prime-boost strategy eliciting high antibody titres against all 9 AHSV serotypes. Furthermore, elevated T helper cells 2 (Th2) and Th1, indicative of humoral and cell-mediated memory T cell immune responses, respectively, were detected in mouse serum collected 14 days after the multivalent prime-boost vaccination. Both Th2 and Th1 may play a role to confer protective immunity. These preclinical immunogenicity studies paved the way to test the safety and protective efficacy of the plant-produced nonavalent VP2 vaccine candidate in the target animals, horses.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Vacunas Virales , Animales , Ratones , Caballos , Virus de la Enfermedad Equina Africana/genética , Enfermedad Equina Africana/prevención & control , Vacunas Combinadas , Cromatografía Liquida , Proteínas de la Cápside , Espectrometría de Masas en Tándem , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA