Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Foods ; 12(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37174457

RESUMEN

Several studies have supported the positive functional health effects of both prebiotics and probiotics on gut microbiota. Among these, the selective growth of beneficial bacteria due to the use of prebiotics and bioactive compounds as an energy and carbon source is critical to promote the development of healthy microbiota within the human gut. The present work aimed to assess the fermentability of tomato flour obtained after ohmic (SFOH) and conventional (SFCONV) extraction of phenolic compounds and carotenoids as well as their potential impact upon specific microbiota groups. To accomplish this, the attained bagasse flour was submitted to an in vitro simulation of gastrointestinal digestion before its potential fermentability and impact upon gut microbiota (using an in vitro fecal fermentation model). Different impacts on the probiotic strains studied were observed for SFCONV promoting the B. animalis growth, while SFOH promoted the B. longum, probably based on the different carbohydrate profiles of the flours. Overall, the flours used were capable of functioning as a direct substrate to support potential prebiotic growth for Bifidus longum. The fecal fermentation model results showed the highest Bacteroidetes growth with SFOH and the highest values of Bacteroides with SFCONV. A correlation between microorganisms' growth and short-chain fatty acids was also found. This by-product seems to promote beneficial effects on microbiota flora and could be a potential prebiotic ingredient, although more extensive in vivo trials would be necessary to confirm this.

2.
Foods ; 12(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231688

RESUMEN

The impact of prebiotics on human health is associated with their capacity to modulate microbiota, improving beneficial microbiota-host interactions. Herein, the prebiotic potential of microbial-fructo-oligosaccharides (microbial-FOSs) produced by a co-culture of Aspergillus ibericus plus Saccharomyces cerevisiae was evaluated on seven- and nine-strain bacterial consortia (7SC and 9SC, respectively), designed to represent the human gut microbiota. The 7SC was composed of Bacteroides dorei, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium longum, Escherichia coli, Lactobacillus acidophilus, and Lactobacillus rhamnosus. The 9SC also comprised the aforementioned bacteria, with the addition of Bacteroides thetaiotaomicron and Roseburia faecis. The effect of microbial-FOSs on the metabolic activity of intestinal Caco-2/HT29-MTX-E12 co-culture was also assessed. The results showed that microbial-FOS selectively promoted the growth of probiotic bacteria and completely suppressed the growth of E. coli. The microbial-FOSs promoted the highest production rates of lactate and total short-chain fatty acids (SCFA) as compared to the commercial prebiotic Frutalose® OFP. Butyrate was only produced in the 9SC consortium, which included the R. faecis-a butyrate-producing bacteria. The inclusion of this bacteria plus another Bacteroides in the 9SC promoted a greater metabolic activity in the Caco-2/HT29-MTX-E12 co-culture. The microbial-FOSs showed potential as promising prebiotics as they selectively promote the growth of probiotic bacteria, producing high concentrations of SCFA, and stimulating the metabolic activity of gut cells.

3.
Biomed Eng Online ; 11: 3, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22236465

RESUMEN

BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.


Asunto(s)
Endoscopía Capsular/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias Intestinales/patología , Grabación en Video/métodos , Humanos , Modelos Estadísticos , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Ondículas
4.
Foods ; 11(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407041

RESUMEN

The prebiotic potential of fructo-oligosaccharides (microbial-FOS) produced by a newly isolated Aspergillus ibericus, and purified by Saccharomyces cerevisiae YIL162 W, was evaluated. Their chemical structure and functionality were compared to a non-microbial commercial FOS sample. Prebiotics were fermented in vitro by fecal microbiota of five healthy volunteers. Microbial-FOS significantly stimulated the growth of Bifidobacterium probiotic strains, triggering a beneficial effect on gut microbiota composition. A higher amount of total short-chain fatty acids (SCFA) was produced by microbial-FOS fermentation as compared to commercial-FOS, particularly propionate and butyrate. Inulin neoseries oligosaccharides, with a degree of polymerization (DP) up to 5 (e.g., neokestose and neonystose), were identified only in the microbial-FOS mixture. More than 10% of the microbial-oligosaccharides showed a DP higher than 5. Differences identified in the structures of the FOS samples may explain their different functionalities. Results indicate that microbial-FOS exhibit promising potential as nutraceutical ingredients for positive gut microbiota modulation.

5.
Artículo en Inglés | MEDLINE | ID: mdl-23366807

RESUMEN

State of the art algorithms for diagnosis of the small bowel by using capsule endoscopic images usually rely on the processing of the whole frame, hence no segmentation is usually required. However, some specific applications such as three-dimensional reconstruction of the digestive wall, detection of small substructures such as polyps and ulcers or training of young medical staff require robust segmentation. Current state of the art algorithms for robust segmentation are mainly based on Markov Random Fields (MRF) requiring prohibitive computational resources not compatible with applications that generate a great amount of data as is the case of capsule endoscopy. However context information given by MRF is not the only way to improve robustness. Alternatives could come from a more effective use of the color information. This paper proposes a Maximum A Posteriori (MAP) based approach for lesion segmentation based on pixel intensities read simultaneously in the three color channels. Usually tumor regions are characterized by higher intensity than normal regions, where the intensity can be measured as the vectorial sum of the 3 color channels. The exception occurs when the capsule is positioned perpendicularly and too close to the small bowel wall. In this case a hipper intense tissue region appears at the middle of the image, which in case of being normal tissue, will be segmented as tumor tissue. This paper also proposes a Maximum Likelihood (ML) based approach to deal with this situation. Experimental results show that tumor segmentation becomes more effective in the HSV than in the RGB color space where diagonal covariance matrices have similar effectiveness than full covariance matrices.


Asunto(s)
Algoritmos , Endoscopía Capsular , Procesamiento de Imagen Asistido por Computador , Neoplasias Intestinales/patología , Intestino Delgado/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA