Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 202(1): 55-67, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37081239

RESUMEN

Based on hypotheses related to environmental filtering vs. stochastic community assembly, we tested taxon-specific predictions regarding the relationships of alpha diversity, beta diversity and species composition of epiphytic macrolichens and bryophytes with elevation and the lateral gradient on trees (the different sides of the tree bole related to aspect and trunk inclination) at Parc national du Mont-Mégantic in Southeastern Québec, Canada. For lichens on firs, increasing elevation was associated with increasing alpha diversity, and a marked shift in community composition, at the scale of whole trees. In contrast, for bryophytes on maples, tree inclination and the lateral gradient had the strongest effects: more inclined trees had greater whole-tree alpha diversity and stronger within-tree contrasts in composition between the upper and lower bole surfaces. For lichens on maples, whole-tree alpha diversity showed a weak, negative relationship with inclination, and beta diversity increased slightly with elevation. Our results are consistent with theories predicting greater alpha diversity in more favorable environments (for lichens: high elevation with high relative air humidity and lower temperatures; for bryophytes: upper surfaces of tree boles with liquid water available), but support was weak for the prediction of greater beta diversity in more favorable environments. Overall, the important predictors of epiphytic cryptogam diversity vary more among the species of tree host (maple vs. fir) than focal taxa (lichens vs. bryophytes), with patterns likely related to different effects of water, temperature, and competition between lichens and bryophytes.


Asunto(s)
Briófitas , Líquenes , Árboles , Canadá
2.
BMC Public Health ; 23(1): 924, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217931

RESUMEN

BACKGROUND: Climate change is increasing the dispersion of mosquitoes and the spread of viruses of which some mosquitoes are the main vectors. In Quebec, the surveillance and management of endemic mosquito-borne diseases, such as West Nile virus or Eastern equine encephalitis, could be improved by mapping the areas of risk supporting vector populations. However, there is currently no active tool tailored to Quebec that can predict mosquito population abundances, and we propose, with this work, to help fill this gap. METHODS: Four species of mosquitos were studied in this project for the period from 2003 to 2016 for the southern part of the province of Quebec: Aedes vexans (VEX), Coquillettidia perturbans (CQP), Culex pipiens-restuans group (CPR) and Ochlerotatus stimulans group (SMG) species. We used a negative binomial regression approach, including a spatial component, to model the abundances of each species or species group as a function of meteorological and land-cover variables. We tested several sets of variables combination, regional and local scale variables for landcover and different lag period for the day of capture for weather variables, to finally select one best model for each species. RESULTS: Models selected showed the importance of the spatial component, independently of the environmental variables, at the larger spatial scale. In these models, the most important land-cover predictors that favored CQP and VEX were 'forest', and 'agriculture' (for VEX only). Land-cover 'urban' had negative impact on SMG and CQP. The weather conditions on the trapping day and previous weather conditions summarized over 30 or 90 days were preferred over a shorter period of seven days, suggesting current and long-term previous weather conditions effects on mosquito abundance. CONCLUSIONS: The strength of the spatial component highlights the difficulties in modelling the abundance of mosquito species and the model selection shows the importance of selecting the right environmental predictors, especially when choosing the temporal and spatial scale of these variables. Climate and landscape variables were important for each species or species group, suggesting it is possible to consider their use in predicting long-term spatial variationsin the abundance of mosquitoes potentially harmful to public health in southern Quebec.


Asunto(s)
Aedes , Culex , Culicidae , Virus del Nilo Occidental , Animales , Humanos , Quebec/epidemiología , Mosquitos Vectores
3.
Ecol Evol ; 4(6): 776-93, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24683460

RESUMEN

Resource defense behavior is often explained by the spatial and temporal distribution of resources. However, factors such as competition, habitat complexity, and individual space use may also affect the capacity of individuals to defend and monopolize resources. Yet, studies frequently focus on one or two factors, overlooking the complexity found in natural settings. Here, we addressed defense and monopolization of nectar feeders in a population of free-ranging ruby-throated hummingbirds marked with passive integrated transponder (PIT tags). Our study system consisted of a 44 ha systematic grid of 45 feeders equipped with PIT tag detectors recording every visit made at feeders. We modeled the number of visits by competitors (NVC) at feeders in response to space use by a focal individual potentially defending a feeder, number of competitors, nectar sucrose concentration, and habitat visibility. Individuals who were more concentrated at certain feeders on a given day and who were more stable in their use of the grid throughout the season gained higher exclusivity in the use of those feeders on that day, especially for males competing against males. The level of spatial concentration at feeders and its negative effect on NVC was, however, highly variable among individuals, suggesting a continuum in resource defense strategies. Although the apparent capacity to defend feeders was not affected by competition or nectar sucrose concentration, the level of monopolization decreased with increasing number of competitors and higher nectar quality. Defense was enhanced by visibility near feeders, but only in forested habitats. The reverse effect of visibility in open habitats was more difficult to interpret as it was probably confounded by perch availability, from which a bird can defend its feeder. Our study is among the first to quantify the joint use of food resource by overlapping individuals unconstrained in their use of space. Our results show the importance of accounting for variation in space use among individuals as it translated into varying levels of defense and monopolization of feeders regardless of food resource distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA