Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(36): 14634-9, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908287

RESUMEN

A previously described mammalian cell activity, called VPg unlinkase, specifically cleaves a unique protein-RNA covalent linkage generated during the viral genomic RNA replication steps of a picornavirus infection. For over three decades, the identity of this cellular activity and its normal role in the uninfected cell had remained elusive. Here we report the purification and identification of VPg unlinkase as the DNA repair enzyme, 5'-tyrosyl-DNA phosphodiesterase-2 (TDP2). Our data show that VPg unlinkase activity in different mammalian cell lines correlates with their differential expression of TDP2. Furthermore, we show that recombinant TDP2 can cleave the protein-RNA linkage generated by different picornaviruses without impairing the integrity of viral RNA. Our results reveal a unique RNA repair-like function for TDP2 and suggest an unusual role in host-pathogen interactions for this cellular enzyme. On the basis of the identification of TDP2 as a potential antiviral target, our findings may lead to the development of universal therapeutics to treat the millions of individuals afflicted annually with diseases caused by picornaviruses, including myocarditis, aseptic meningitis, encephalitis, hepatitis, and the common cold.


Asunto(s)
Proteínas Nucleares/metabolismo , Picornaviridae/metabolismo , Ribonucleoproteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Proteínas de Unión al ADN , Electroforesis en Gel de Poliacrilamida , Evolución Molecular , Técnica del Anticuerpo Fluorescente , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Microscopía Confocal , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas , Picornaviridae/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/genética
2.
J Virol ; 87(19): 10423-34, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23903828

RESUMEN

To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3' noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5' NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5' NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses.


Asunto(s)
Infecciones por Coxsackievirus/virología , Enterovirus/patogenicidad , Ribonucleoproteína Heterogénea-Nuclear Grupo D/fisiología , Infecciones por Picornaviridae/virología , Estabilidad del ARN , Rhinovirus/patogenicidad , Proteasas Virales 3C , Animales , Células Cultivadas , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/metabolismo , Cisteína Endopeptidasas/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Ensayo de Cambio de Movilidad Electroforética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/virología , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Técnica del Anticuerpo Fluorescente , Células HeLa , Ribonucleoproteína Nuclear Heterogénea D0 , Humanos , Ratones , Ratones Noqueados , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/metabolismo , Poliovirus/genética , Biosíntesis de Proteínas , Isoformas de Proteínas , ARN no Traducido/genética , ARN Viral/genética , Conejos , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
3.
PLoS Pathog ; 7(12): e1002433, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22174690

RESUMEN

SARS coronavirus (SCoV) nonstructural protein (nsp) 1, a potent inhibitor of host gene expression, possesses a unique mode of action: it binds to 40S ribosomes to inactivate their translation functions and induces host mRNA degradation. Our previous study demonstrated that nsp1 induces RNA modification near the 5'-end of a reporter mRNA having a short 5' untranslated region and RNA cleavage in the encephalomyocarditis virus internal ribosome entry site (IRES) region of a dicistronic RNA template, but not in those IRES elements from hepatitis C or cricket paralysis viruses. By using primarily cell-free, in vitro translation systems, the present study revealed that the nsp1 induced endonucleolytic RNA cleavage mainly near the 5' untranslated region of capped mRNA templates. Experiments using dicistronic mRNAs carrying different IRESes showed that nsp1 induced endonucleolytic RNA cleavage within the ribosome loading region of type I and type II picornavirus IRES elements, but not that of classical swine fever virus IRES, which is characterized as a hepatitis C virus-like IRES. The nsp1-induced RNA cleavage of template mRNAs exhibited no apparent preference for a specific nucleotide sequence at the RNA cleavage sites. Remarkably, SCoV mRNAs, which have a 5' cap structure and 3' poly A tail like those of typical host mRNAs, were not susceptible to nsp1-mediated RNA cleavage and importantly, the presence of the 5'-end leader sequence protected the SCoV mRNAs from nsp1-induced endonucleolytic RNA cleavage. The escape of viral mRNAs from nsp1-induced RNA cleavage may be an important strategy by which the virus circumvents the action of nsp1 leading to the efficient accumulation of viral mRNAs and viral proteins during infection.


Asunto(s)
Regulación Viral de la Expresión Génica/genética , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas no Estructurales Virales/metabolismo , ARN Mensajero/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Moldes Genéticos , Proteínas no Estructurales Virales/genética
4.
J Virol ; 85(1): 638-43, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21047955

RESUMEN

The nsp1 protein of transmissible gastroenteritis virus (TGEV), an alphacoronavirus, efficiently suppressed protein synthesis in mammalian cells. Unlike the nsp1 protein of severe acute respiratory syndrome coronavirus, a betacoronavirus, the TGEV nsp1 protein was unable to bind 40S ribosomal subunits or promote host mRNA degradation. TGEV nsp1 also suppressed protein translation in cell-free HeLa cell extract; however, it did not affect translation in rabbit reticulocyte lysate (RRL). Our data suggested that HeLa cell extracts and cultured host cells, but not RRL, contain a host factor(s) that is essential for TGEV nsp1-induced translational suppression.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas/efectos de los fármacos , Virus de la Gastroenteritis Transmisible/patogenicidad , Proteínas no Estructurales Virales/farmacología , Animales , Extractos Celulares , Línea Celular , Células HeLa/virología , Humanos , Riñón/citología , Riñón/virología , Masculino , Conejos , Reticulocitos/virología , Porcinos , Testículo/citología , Testículo/virología , Proteínas no Estructurales Virales/metabolismo
5.
mBio ; 3(6): e00431-12, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23131833

RESUMEN

UNLABELLED: Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5' noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. IMPORTANCE: This study derives its significance from reporting how picornaviruses like poliovirus and human rhinovirus proteolytically cleave a key player (AUF1) in host mRNA decay pathways during viral infection. Beyond cleavage of AUF1 by the major viral proteinase encoded in picornavirus genomes, infection by poliovirus results in the relocalization of this host cell RNA binding protein from the nucleus to the cytoplasm. The alteration of both the physical state of AUF1 and its cellular location illuminates how small RNA viruses manipulate the activities of host cell RNA binding proteins to ensure a faithful intracellular replication cycle.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Interacciones Huésped-Patógeno , Poliovirus/fisiología , ARN Viral/metabolismo , Rhinovirus/fisiología , Replicación Viral , Proteasas Virales 3C , Cisteína Endopeptidasas/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogénea D0 , Humanos , Proteolisis , Proteínas Virales/metabolismo
6.
PLoS One ; 6(3): e16559, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21408223

RESUMEN

Using poliovirus, the prototypic member of Picornaviridae, we have further characterized a host cell enzymatic activity found in uninfected cells, termed "unlinkase," that recognizes and cleaves the unique 5' tyrosyl-RNA phosphodiester bond found at the 5' end of picornavirus virion RNAs. This bond connects VPg, a viral-encoded protein primer essential for RNA replication, to the viral RNA; it is cleaved from virion RNA prior to its engaging in protein synthesis as mRNA. Due to VPg retention on nascent RNA strands and replication templates, but not on viral mRNA, we hypothesize that picornaviruses utilize unlinkase activity as a means of controlling the ratio of viral RNAs that are translated versus those that either serve as RNA replication templates or are encapsidated. To test our hypothesis and further characterize this enzyme, we have developed a novel assay to detect unlinkase activity. We demonstrate that unlinkase activity can be detected using this assay, that this unique activity remains unchanged over the course of a poliovirus infection in HeLa cells, and that unlinkase activity is unaffected by the presence of exogenous VPg or anti-VPg antibodies. Furthermore, we have determined that unlinkase recognizes and cleaves a human rhinovirus-poliovirus chimeric substrate with the same efficiency as the poliovirus substrate.


Asunto(s)
Ingeniería Genética , Hidrolasas Diéster Fosfóricas/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , ARN Viral/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Extractos Celulares , Pruebas de Enzimas , Genoma Viral/genética , Células HeLa , Humanos , Marcaje Isotópico , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Rhinovirus/metabolismo , Ribonucleasa T1/metabolismo , Especificidad por Sustrato , Proteínas Virales/química , Proteínas Virales/metabolismo , Virión/metabolismo
7.
Virology ; 400(2): 240-7, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20189623

RESUMEN

The hnRNP C heterotetramer [(C1(3))C2] binds RNA polymerase II transcripts in the nucleus, along with other proteins of the core hnRNP complex, and plays an important role in mRNA biogenesis and transport. Infection of HeLa cells with poliovirus causes hnRNP C to re-localize from the nucleus, where it is normally retained during interphase, to the cytoplasm. We have proposed that in the cytoplasm, the protein isoforms of hnRNP C participate in the recognition of viral specific RNAs by the poliovirus replication proteins and/or in the assembly of membrane-bound RNA replication complexes. In SK-OV-3 cells, which express reduced levels of hnRNP C compared to HeLa cells or 293 cells, the kinetics of poliovirus replication are delayed. hnRNP C is also re-localized from the nucleus to the cytoplasm in SK-OV-3 cells infected with poliovirus. Increased expression of hnRNP C in SK-OV-3 cells by transient transfection increases the rate of virus production and overall yield over that seen in mock-transfected cells. We propose that hnRNP C interacts with poliovirus RNA and replication proteins to increase the efficiency of viral genomic RNA synthesis.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Interacciones Huésped-Patógeno , Poliovirus/fisiología , ARN Viral/biosíntesis , Replicación Viral , Línea Celular Tumoral , Núcleo Celular/química , Citoplasma/química , Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Humanos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA