Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 324(5): E461-E475, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37053049

RESUMEN

Hypogonadism in males confers elevated cardiovascular disease (CVD) risk by unknown mechanisms. Recent radiological evidence suggests that low testosterone (T) is associated with mediobasal hypothalamic (MBH) gliosis, a central nervous system (CNS) cellular response linked to metabolic dysfunction. To address mechanisms linking CNS androgen action to CVD risk, we generated a hypogonadal, hyperlipidemic mouse model with orchiectomy (ORX) combined with hepatic PCSK9 overexpression. After 4 wk of high-fat, high-sucrose diet (HFHS) consumption, despite equal body weights and glucose tolerance, androgen-deficient ORX mice had a more atherogenic lipid profile and increased liver and leukocyte inflammatory signaling compared with sham-operated control mice. Along with these early CVD risk indicators, ORX markedly amplified HFHS-induced astrogliosis in the MBH. Transcriptomic analysis further revealed that ORX and high-fat diet feeding induced upregulation of inflammatory pathways and downregulation of metabolic pathways in hypothalamic astrocytes. To interrogate the role of sex steroid signaling in the CNS in cardiometabolic risk and MBH inflammation, central infusion of T and dihydrotestosterone (DHT) was performed on ORX mice. Central DHT prevented MBH astrogliosis and reduced the liver inflammatory signaling and monocytosis induced by HFHS and ORX; T had a partial protective effect. Finally, a cross-sectional study in 41 adult men demonstrated a positive correlation between radiological evidence of MBH gliosis and plasma lipids. These findings demonstrate that T deficiency in combination with a Western-style diet promotes hypothalamic gliosis concomitant with increased atherogenic risk factors and provide supportive evidence for regulation of lipid metabolism and cardiometabolic risk determinants by the CNS action of sex steroids.NEW & NOTEWORTHY This study provides evidence that hypothalamic gliosis is a key early event through which androgen deficiency in combination with a Western-style diet might lead to cardiometabolic dysregulation in males. Furthermore, this work provides the first evidence in humans of a positive association between hypothalamic gliosis and LDL-cholesterol, advancing our knowledge of CNS influences on CVD risk progression.


Asunto(s)
Andrógenos , Enfermedades Cardiovasculares , Humanos , Ratones , Masculino , Animales , Proproteína Convertasa 9 , Dieta Alta en Grasa/efectos adversos , Gliosis , Orquiectomía , Estudios Transversales , Factores de Riesgo , Dihidrotestosterona
3.
Clin Endocrinol (Oxf) ; 93(5): 555-563, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32633813

RESUMEN

OBJECTIVE: Ageing in male adults is typically accompanied by adiposity accumulation and changes in circulating sex hormone concentrations. We hypothesized that an ageing-associated increase in oestrogens and decrease in androgens would correlate with an increase in adiposity. DESIGN: 10-year prospective, observational study. STUDY SUBJECTS: A total of 190, community-dwelling men in the Japanese American Community Diabetes Study. MEASUREMENTS: At 0 and 10 years, CT scanning quantified intra-abdominal fat (IAF) and subcutaneous fat (SCF) areas while plasma concentrations of oestradiol, oestrone, testosterone and dihydrotestosterone were measured by liquid chromatography-tandem-mass spectrometry at each time point. Multivariate linear regression analyses assessed correlations between 10-year changes in hormone concentrations and IAF or SCF, adjusting for age and baseline fat depot area. RESULTS: Participants were middle-aged [median 54.8 years, interquartile range (IQR) 39.9-62.8] men and mostly overweight by Asian criterion (median BMI 24.9, IQR 23.3-27.1) and with few exceptions had normal sex-steroid concentrations. Median oestradiol and dihydrotestosterone did not change significantly between 0 and 10 years (P = .084 and P = .596, respectively) while median oestrone increased (P < .001) and testosterone decreased (P < .001). Median IAF and SCF increased from 0 to 10 years (both P < .001). In multivariate analyses, change in oestrone positively correlated (P = .019) while change in testosterone (P = .003) and dihydrotestosterone (P = .014) negatively correlated with change in IAF. Plasma oestradiol and oestrone positively correlated with change in SCF (P = .041 and P = .030, respectively) while testosterone (P = .031) negatively correlated in multivariate analysis. CONCLUSION: Among 190 community-dwelling, Japanese American men, increases in IAF were associated with decreases in plasma androgens and increases in plasma oestrone, but not oestradiol, at 10 years. Further research is necessary to understand whether changing hormone concentrations are causally related to changes in regional adiposity or whether the reverse is true.


Asunto(s)
Adiposidad , Asiático , Adulto , Estradiol , Estrona , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Testosterona , Tomografía Computarizada por Rayos X
4.
Am J Physiol Endocrinol Metab ; 313(5): E528-E539, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28698282

RESUMEN

Male hypogonadism results in changes in body composition characterized by increases in fat mass. Resident immune cells influence energy metabolism in adipose tissue and could promote increased adiposity through paracrine effects. We hypothesized that manipulation of circulating sex steroid levels in healthy men would alter adipose tissue immune cell populations. Subjects (n = 44 men, 19-55 yr of age) received 4 wk of treatment with the gonadotropin-releasing hormone receptor antagonist acyline with daily administration of 1) placebo gel, 2) 1.25 g testosterone gel (1.62%), 3) 5 g testosterone gel, or 4) 5 g testosterone gel with an aromatase inhibitor. Subcutaneous adipose tissue biopsies were performed at baseline and end-of-treatment, and adipose tissue immune cells, gene expression, and intra-adipose estrogen levels were quantified. Change in serum total testosterone level correlated inversely with change in the number of CD3+ (ß = -0.36, P = 0.04), CD4+ (ß = -0.34, P = 0.04), and CD8+ (ß = -0.33, P = 0.05) T cells within adipose tissue. Change in serum 17ß-estradiol level correlated inversely with change in the number of adipose tissue macrophages (ATMs) (ß = -0.34, P = 0.05). A negative association also was found between change in serum testosterone and change in CD11c+ ATMs (ß = -0.41, P = 0.01). Overall, sex steroid deprivation was associated with increases in adipose tissue T cells and ATMs. No associations were found between changes in serum sex steroid levels and changes in adipose tissue gene expression. Circulating sex steroid levels may regulate adipose tissue immune cell populations. These exploratory findings highlight a possible novel mechanism that could contribute to increased metabolic risk in hypogonadal men.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/inmunología , Hormonas Esteroides Gonadales/fisiología , Inmunidad Celular/fisiología , Adulto , Inhibidores de la Aromatasa/farmacología , Antígeno CD11c/metabolismo , Complejo CD3/metabolismo , Antígenos CD4/metabolismo , Estradiol/farmacología , Regulación de la Expresión Génica , Hormonas Esteroides Gonadales/sangre , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Receptores LHRH/antagonistas & inhibidores , Linfocitos T/inmunología , Testosterona/sangre , Testosterona/farmacología , Adulto Joven
5.
Kidney Int ; 92(6): 1526-1535, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28754556

RESUMEN

Patients with chronic kidney disease (CKD) exhibit a myriad of metabolic derangements, including dyslipidemia characterized by low plasma concentrations of high-density lipoprotein (HDL)-associated cholesterol. However, the effects of kidney disease on HDL composition have not been comprehensively determined. Here we used a targeted mass spectrometric approach to quantify 38 proteins contained in the HDL particles within a CKD cohort of 509 participants with a broad range of estimated glomerular filtration rates (eGFRs) (CKD stages I-V, and a mean eGFR of 45.5 mL/min/1.73m2). After adjusting for multiple testing, demographics, comorbidities, medications, and other characteristics, eGFR was significantly associated with differences in four HDL proteins. Compared to participants with an eGFR of 60 mL/min/1.73m2 or more, those with an eGFR under 15 mL/min/1.73m2 exhibited 1.89-fold higher retinol-binding protein 4 (95% confidence interval 1.34-2.67), 1.52-fold higher apolipoprotein C-III (1.25-1.84), 0.70-fold lower apolipoprotein L1 (0.55-0.92), and 0.64-fold lower vitronectin (0.48-0.85). Although the HDL apolipoprotein L1 was slightly lower among African Americans than among Caucasian individuals, the relationship to eGFR did not differ by race. After adjustment, no HDL-associated proteins associated with albuminuria. Thus, modest changes in the HDL proteome provide preliminary evidence for an association between HDL proteins and declining kidney function, but this needs to be replicated. Future analyses will determine if HDL proteomics is indeed a clinical predictor of declining kidney function or cardiovascular outcomes.


Asunto(s)
Dislipidemias/sangre , Lipoproteínas HDL/sangre , Insuficiencia Renal Crónica/sangre , Adulto , Negro o Afroamericano/estadística & datos numéricos , Anciano , Cromatografía Liquida/métodos , Estudios de Cohortes , Dislipidemias/metabolismo , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Proteómica/métodos , Insuficiencia Renal Crónica/metabolismo , Factores de Riesgo , Espectrometría de Masas en Tándem/métodos , Población Blanca/estadística & datos numéricos
6.
Clin Endocrinol (Oxf) ; 87(1): 59-67, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28370068

RESUMEN

OBJECTIVE: Serum sex steroid concentrations may alter body composition and glucose homoeostasis in men in a dose-response manner. We evaluated these end-points in healthy men rendered medically castrate through use of a gonadotrophin-releasing hormone antagonist (acyline) with incremental doses of exogenous testosterone (T) gel. DESIGN: Subjects (n=6-9 per group) were randomly assigned to injections of acyline every 2 weeks plus transdermal T gel (1.25 g, 2.5 g, 5.0 g, 10 g or 15 g) daily or double placebo (injections and gel) for 12 weeks. PATIENTS: Healthy men, ages 25-55 years, with normal serum total T concentrations. MEASUREMENTS: Serum T, dihydrotestosterone (DHT) and oestradiol (E2) were measured at baseline and every 2 weeks. Body composition was analysed by dual-energy X-ray absorptiometry at baseline and week 12. Fasting serum adiponectin, leptin, glucose and insulin concentrations were measured at baseline and week 10. RESULTS: Forty-eight men completed the study. A significant treatment effect was observed for change in lean mass (ANOVAP=.01) but not fat mass (P=.14). Lean mass increased in the 15 g T group relative to all lower dose groups, except the 10 g T group. When all subjects were analysed together, changes in lean mass correlated directly and changes in fat mass correlated inversely with serum T, E2 and DHT. No changes were noted in serum glucose, insulin or adipokine levels. CONCLUSIONS: In healthy men, higher serum concentrations of T, DHT and E2 were associated with greater increases in lean mass and decreases in fat mass but not with changes in serum glucose, insulin or adipokines.


Asunto(s)
Adipoquinas/sangre , Composición Corporal/efectos de los fármacos , Hormonas Esteroides Gonadales/administración & dosificación , Testosterona/administración & dosificación , Adulto , Glucemia , Dihidrotestosterona/sangre , Relación Dosis-Respuesta a Droga , Estradiol/sangre , Hormonas Esteroides Gonadales/sangre , Voluntarios Sanos , Antagonistas de Hormonas , Humanos , Insulina/sangre , Masculino , Persona de Mediana Edad , Oligopéptidos/administración & dosificación , Testosterona/sangre
7.
Adv Exp Med Biol ; 1043: 285-313, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29224100

RESUMEN

Our understanding of the metabolic roles of sex steroids in men has evolved substantially over recent decades. Whereas testosterone once was believed to contribute to metabolic risk in men, the importance of adequate androgen exposure for the maintenance of metabolic health has been demonstrated unequivocally. A growing body of evidence now also supports a critical role for estrogens in metabolic regulation in men. Recent data from clinical intervention studies indicate that estradiol may be a stronger determinant of adiposity than testosterone in men, and even short-term estradiol deprivation contributes to fat mass accrual. The following chapter will outline findings to date regarding the mechanisms, whereby estrogens contribute to the regulation of body weight and adiposity in men. It will present emergent clinical data as well as preclinical findings that reveal mechanistic insights into estrogen-mediated regulation of body composition. Findings in both males and females will be reviewed, to draw comparisons and to highlight knowledge gaps regarding estrogen action specifically in males. Finally, the clinical relevance of estrogen exposure in men will be discussed, particularly in the context of a rising global prevalence of obesity and expanding clinical use of sex steroid-based therapies in men.


Asunto(s)
Adiposidad , Peso Corporal , Metabolismo Energético , Estrógenos/metabolismo , Obesidad/metabolismo , Adiposidad/efectos de los fármacos , Adiposidad/genética , Animales , Fármacos Antiobesidad/uso terapéutico , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Estrógenos/uso terapéutico , Humanos , Masculino , Ratones , Mutación , Obesidad/genética , Obesidad/fisiopatología , Obesidad/prevención & control , Factores Sexuales
8.
J Biol Chem ; 288(14): 9957-9970, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23426369

RESUMEN

The enzyme acyl-CoA synthetase 1 (ACSL1) is induced by peroxisome proliferator-activated receptor α (PPARα) and PPARγ in insulin target tissues, such as skeletal muscle and adipose tissue, and plays an important role in ß-oxidation in these tissues. In macrophages, however, ACSL1 mediates inflammatory effects without significant effects on ß-oxidation. Thus, the function of ACSL1 varies in different tissues. We therefore investigated the signals and signal transduction pathways resulting in ACSL1 induction in macrophages as well as the consequences of ACSL1 deficiency for phospholipid turnover in LPS-activated macrophages. LPS, Gram-negative bacteria, IFN-γ, and TNFα all induce ACSL1 expression in macrophages, whereas PPAR agonists do not. LPS-induced ACSL1 expression is dependent on Toll-like receptor 4 (TLR4) and its adaptor protein TRIF (Toll-like receptor adaptor molecule 1) but does not require the MyD88 (myeloid differentiation primary response gene 88) arm of TLR4 signaling; nor does it require STAT1 (signal transducer and activator of transcription 1) for maximal induction. Furthermore, ACSL1 deletion attenuates phospholipid turnover in LPS-stimulated macrophages. Thus, the regulation and biological function of ACSL1 in macrophages differ markedly from that in insulin target tissues. These results suggest that ACSL1 may have an important role in the innate immune response. Further, these findings illustrate an interesting paradigm in which the same enzyme, ACSL1, confers distinct biological effects in different cell types, and these disparate functions are paralleled by differences in the pathways that regulate its expression.


Asunto(s)
Coenzima A Ligasas/metabolismo , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Fosfolípidos/metabolismo , Animales , Células de la Médula Ósea/citología , Femenino , Inmunidad Innata , Interferón gamma/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Macrófagos/citología , Macrófagos Peritoneales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Transducción de Señal
9.
PLoS One ; 19(2): e0296390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315701

RESUMEN

Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices' patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17ß-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX , Aromatasa , Trasplante de Médula Ósea , Ginecomastia , Infertilidad Masculina , Errores Innatos del Metabolismo , Ratones , Animales , Masculino , Aromatasa/genética , Aromatasa/metabolismo , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/metabolismo , Porosidad , Ratones Endogámicos C57BL , Estrógenos , Estradiol , Células de la Médula Ósea/metabolismo , Columna Vertebral/metabolismo , Ratones Noqueados
10.
J Lipid Res ; 53(7): 1376-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22504910

RESUMEN

The effects of androgens on cardiovascular disease (CVD) risk in men remain unclear. To better characterize the relationship between androgens and HDL, we investigated the effects of testosterone replacement on HDL protein composition and serum HDL-mediated cholesterol efflux in hypogonadal men. Twenty-three older hypogonadal men (ages 51-83, baseline testosterone < 280 ng/dl) were administered replacement testosterone therapy (1% transdermal gel) with or without the 5α-reductase inhibitor dutasteride. At baseline and after three months of treatment, we determined fasting lipid concentrations, HDL protein composition, and the cholesterol efflux capacity of serum HDL. Testosterone replacement did not affect HDL cholesterol (HDL-C) concentrations but conferred significant increases in HDL-associated paraoxonase 1 (PON1) and fibrinogen α chain (FGA) (P = 0.022 and P = 0.023, respectively) and a decrease in apolipoprotein A-IV (apoA-IV) (P = 0.016). Exogenous testosterone did not affect the cholesterol efflux capacity of serum HDL. No differences were observed between men who received testosterone alone and those who also received dutasteride. Testosterone replacement in older hypogonadal men alters the protein composition of HDL but does not significantly change serum HDL-mediated cholesterol efflux. These effects appear independent of testosterone conversion to dihydrotestosterone. Further research is needed to determine how changes in HDL protein content affect CVD risk in men.


Asunto(s)
HDL-Colesterol/metabolismo , Hipogonadismo/tratamiento farmacológico , Proteoma/efectos de los fármacos , Testosterona/uso terapéutico , HDL-Colesterol/sangre , Ayuno , Humanos , Hipogonadismo/sangre , Hipogonadismo/metabolismo , Masculino , Persona de Mediana Edad , Testosterona/administración & dosificación , Testosterona/farmacología
11.
Kidney Int ; 92(6): 1556, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29153142
12.
J Mol Endocrinol ; 69(3): R95-R108, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35900842

RESUMEN

Vitamin A (retinol) is an essential, fat-soluble vitamin that plays critical roles in embryonic development, vision, immunity, and reproduction. Severe vitamin A deficiency results in profound embryonic dysgenesis, blindness, and infertility. The roles of bioactive vitamin A metabolites in regulating cell proliferation, cellular differentiation, and immune cell function form the basis of their clinical use in the treatment of dermatologic conditions and hematologic malignancies. Increasingly, vitamin A also has been recognized to play important roles in cardiometabolic health, including the regulation of adipogenesis, energy partitioning, and lipoprotein metabolism. While these roles are strongly supported by animal and in vitro studies, they remain poorly understood in human physiology and disease. This review briefly introduces vitamin A biology and presents the key preclinical data that have generated interest in vitamin A as a mediator of cardiometabolic health. The review also summarizes clinical studies performed to date, highlighting the limitations of many of these studies and the ongoing controversies in the field. Finally, additional perspectives are suggested that may help position vitamin A metabolism within a broader biological context and thereby contribute to enhanced understanding of vitamin A's complex roles in clinical cardiometabolic disease.


Asunto(s)
Enfermedades Cardiovasculares , Deficiencia de Vitamina A , Adipogénesis , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Femenino , Homeostasis/fisiología , Humanos , Embarazo , Vitamina A/metabolismo , Vitamina A/uso terapéutico , Deficiencia de Vitamina A/tratamiento farmacológico , Deficiencia de Vitamina A/metabolismo
13.
Clin Transl Sci ; 15(6): 1460-1471, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35213790

RESUMEN

The prevalence of obesity continues to rise, underscoring the need to better understand the pathways mediating adipose tissue (AT) expansion. All-trans-retinoic acid (atRA), a bioactive vitamin A metabolite, regulates adipogenesis and energy metabolism, and, in rodent studies, aberrant vitamin A metabolism appears a key facet of metabolic dysregulation. The relevance of these findings to human disease is unknown, as are the specific enzymes implicated in vitamin A metabolism within human AT. We hypothesized that in human AT, family 1A aldehyde dehydrogenase (ALDH1A) enzymes contribute to atRA biosynthesis in a depot-specific manner. To test this hypothesis, parallel samples of subcutaneous and omental AT from participants (n = 15) were collected during elective abdominal surgeries to quantify atRA biosynthesis and key atRA synthesizing enzymes. ALDH1A1 was the most abundant ALDH1A isoform in both AT depots with expression approximately twofold higher in omental than subcutaneous AT. ALDH1A2 was detected only in omental AT. Formation velocity of atRA was approximately threefold higher (p = 0.0001) in omental AT (9.8 [7.6, 11.2]) pmol/min/mg) than subcutaneous AT (3.2 [2.1, 4.0] pmol/min/mg) and correlated with ALDH1A2 expression in omental AT (ß-coefficient = 3.07, p = 0.0007) and with ALDH1A1 expression in subcutaneous AT (ß-coefficient = 0.13, p = 0.003). Despite a positive correlation between body mass index (BMI) and omental ALDH1A1 protein expression (Spearman r = 0.65, p = 0.01), BMI did not correlate with atRA formation. Our findings suggest that ALDH1A2 is the primary mediator of atRA formation in omental AT, whereas ALDH1A1 is the principal atRA-synthesizing enzyme in subcutaneous AT. These data highlight AT depot as a critical variable for defining the roles of retinoids in human AT biology.


Asunto(s)
Tejido Adiposo , Vitamina A , Tejido Adiposo/metabolismo , Humanos , Obesidad/metabolismo , Grasa Subcutánea , Tretinoina/metabolismo
14.
Clin Transl Sci ; 14(5): 1681-1688, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33742772

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, and its prevalence is increasing rapidly. According to the Alzheimer's Association, over 5 million adults in the United States over the age of 65 years currently have AD, and this number is expected to exceed 13 million by 2050 in the absence of novel, preventative strategies. Epidemiologic studies have implicated the presence of type 2 diabetes mellitus (T2DM) specifically at midlife as a key modifiable risk factor for AD, and AD may increase risk of dysglycemia and T2DM. However, data have been inconsistent with regard to the magnitude of AD risk attributable to T2DM, and the pathways underlying this apparent relationship remain poorly understood. Elucidating the impact of T2DM on AD risk and progression requires greater attention to the myriad facets of T2DM pathophysiology, its comorbid conditions, and attendant treatment modalities, all of which may differentially impact the relationships among T2DM, cognitive decline, and AD. This mini-review will summarize the discrete facets of T2DM that may influence AD risk and highlight the importance of careful clinical phenotyping in both epidemiologic and interventional studies to better delineate the key pathways and mechanisms linking T2DM and AD.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Glucemia/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Progresión de la Enfermedad , Humanos , Prevalencia , Factores de Riesgo
15.
J Clin Lipidol ; 15(1): 151-161.e0, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33288437

RESUMEN

BACKGROUND: The cardiovascular (CV) safety of estrogen replacement therapy (ERT) in perimenopausal women remains uncertain. Although exogenous estrogens increase HDL cholesterol (HDL-C), estrogen-mediated effects on alternative metrics of HDL that may better predict CV risk are unknown. OBJECTIVE: To determine the effects of transdermal ERT on HDL composition and cholesterol efflux capacity (CEC), as well as the relationships between these metrics and CV risk factors. METHODS: Fasting plasma samples were analyzed from 101 healthy, perimenopausal women randomized to receive either transdermal placebo or transdermal estradiol (100 µg/24 h) with intermittent micronized progesterone. At baseline and after 6 months of treatment, serum HDL CEC, HDL particle concentration, HDL protein composition, insulin resistance and brachial artery flow-mediated dilatation (FMD) were measured. RESULTS: No difference between groups was found for change in plasma HDL-C (p = 0.69). Between-group differences were found for changes in serum HDL total CEC [median change from baseline -5.4 (-17.3,+8.4)% ERT group versus +5.8 (-6.3,+16.9)% placebo group, p = 0.01] and ABCA1-specific CEC [median change from baseline -5.3 (-10.7,+6.7)% ERT group versus +7.4 (-1.5,+18.1)% placebo group, p = 0.0002]. Relative to placebo, transdermal ERT led to reductions in LDL-C (p < 0.0001) and insulin resistance (p = 0.0002). An inverse correlation was found between changes in serum HDL total CEC and FMD (ß = -0.26, p = 0.004). CONCLUSIONS: Natural menopause leads to an increase in serum HDL CEC, an effect that is abrogated by transdermal ERT. However, transdermal ERT leads to favorable changes in major CV risk factors.


Asunto(s)
Factores de Riesgo de Enfermedad Cardiaca , Adulto , HDL-Colesterol , Estradiol , Femenino , Humanos , Persona de Mediana Edad
16.
PLoS One ; 15(1): e0227830, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31971970

RESUMEN

Estrogens are important for maintaining metabolic health in males. However, the key sources of local estrogen production for regulating energy metabolism have not been fully defined. Immune cells exhibit aromatase activity and are resident in metabolic tissues. To determine the relative contribution of immune cell-derived estrogens for metabolic health in males, C57BL6/J mice underwent bone marrow transplant with marrow from either wild-type (WT(WT)) or aromatase-deficient (WT(ArKO)) donors. Body weight, body composition, and glucose and insulin tolerance were assessed over 24 weeks with mice maintained on a regular chow diet. No differences were found in insulin sensitivity between groups, but WT(ArKO) mice were more glucose tolerant than WT(WT) mice 20 weeks after transplant, suggestive of enhanced glucose disposal (AUCglucose 6061±3349 in WT(WT) mice versus 3406±1367 in WT(ArKO) mice, p = 0.01). Consistent with this, skeletal muscle from WT(ArKO) mice showed higher expression of the mitochondrial genes Ppargc1a (p = 0.03) and Nrf1 (p = 0.01), as well as glucose transporter type 4 (GLUT4, Scl2a4; p = 0.02). Skeletal muscle from WT(ArKO) mice had a lower concentration of 17ß-estradiol (5489±2189 pg/gm in WT(WT) mice versus 3836±2160 pg/gm in WT(ArKO) mice, p = 0.08) but higher expression of estrogen receptor-α (ERα, Esr1), raising the possibility that aromatase deficiency in immune cells led to a compensatory increase in ERα signaling. No differences between groups were found with regard to body weight, adiposity, or gene expression within adipose tissue or liver. Immune cells are a key source of local 17ß-estradiol production and contribute to metabolic regulation in males, particularly within skeletal muscle. The respective intracrine and paracrine roles of immune cell-derived estrogens require further delineation, as do the pathways that regulate aromatase activity in immune cells specifically within metabolic tissues.


Asunto(s)
Aromatasa/genética , Glucosa/metabolismo , Células Madre Hematopoyéticas/metabolismo , Músculo Esquelético/metabolismo , Animales , Aromatasa/metabolismo , Trasplante de Médula Ósea , Células Cultivadas , Estrógenos/metabolismo , Eliminación de Gen , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
J Clin Lipidol ; 14(1): 66-76.e11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31859127

RESUMEN

BACKGROUND: Humans spend most of the time in the postprandial state, yet most knowledge about high-density lipoproteins (HDL) derives from the fasted state. HDL protein and lipid cargo mediate HDL's antiatherogenic effects, but whether these HDL constituents change in the postprandial state and are affected by dietary macronutrients remains unknown. OBJECTIVES: This study aimed to assess changes in HDL protein and lipid composition after the consumption of a high-carbohydrate or high saturated fat (HSF) meal. METHODS: We isolated HDL from plasma collected during a randomized, cross-over study of metabolically healthy subjects. Subjects consumed isocaloric meals consisting predominantly of either carbohydrate or fat. At baseline and at 3 and 6 hours postprandial, we quantified HDL protein and lipid composition by liquid chromatography-mass spectrometry. RESULTS: A total of 15 subjects were included (60% female, aged 34 ± 15 years, body mass index: 24.1 ± 2.7 kg/m2). Consumption of the HSF meal led to HDL enrichment in total lipid (P = .006), triglyceride (P = .02), and phospholipid (P = .008) content and a corresponding depletion in protein content. After the HSF meal, 16 of the 25 measured phosphatidylcholine species significantly increased in abundance (P values range from .027 to <.001), along with several sphingolipids including ceramides (P < .004), lactosylceramide (P = .023), and sphingomyelin-14 (P = .013). Enrichment in apolipoprotein A-I (P = .001) was the only significant change in HDL protein composition after the HSF meal. The high-carbohydrate meal conferred only minimal changes in HDL composition. CONCLUSION: Meal macronutrient content acutely affects HDL composition in the postprandial state, with the HSF meal resulting in enrichment of HDL phospholipid content with possible consequences for HDL function.


Asunto(s)
Carbohidratos/administración & dosificación , Grasas de la Dieta/administración & dosificación , Ácidos Grasos/sangre , Lipoproteínas HDL/sangre , Obesidad/sangre , Adulto , Glucemia/genética , Índice de Masa Corporal , Carbohidratos/efectos adversos , LDL-Colesterol/sangre , Grasas de la Dieta/efectos adversos , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Ayuno , Femenino , Humanos , Lipidómica/métodos , Masculino , Comidas , Obesidad/dietoterapia , Obesidad/genética , Obesidad/patología , Periodo Posprandial/genética , Triglicéridos/sangre
19.
Mol Metab ; 15: 92-103, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29551633

RESUMEN

BACKGROUND: Over the past two decades, parallel recognition has grown of the importance of both sex steroids and immune activity in metabolic regulation. More recently, these discrete areas have been integrated in studies examining the metabolic effects of sex steroid immunomodulation. Implicit in these studies has been a traditional, endocrine model of sex steroid delivery from the gonads to target cells, including immune cells. Thus, research to date has focused on the metabolic effects of sex steroid receptor signaling in immune cells. This endocrine model, however, overlooks the extensive capacity of immune cells to generate and metabolize sex steroids, enabling the production of sex steroids for intracrine signaling - that is, sex steroid production for signaling within the cell of origin. Intracrine function allows highly cell-autonomous regulation of sex steroid exposure, and sex steroid secretion by immune cells could confer paracrine signaling effects in neighboring cells within metabolic tissues. In this review, immune cell intracrinology will denote sex steroid production within immune cells for either intracrine or paracrine signaling. This intracrine capacity of immune cells has been well established, and prior work has supported its importance in autoimmune disorders, trauma, and cancer. The potential relevance of immune cell intracrine function to the regulation of energy balance, body weight, body composition, and insulin sensitivity has yet to be explored. SCOPE OF REVIEW: The following review will detail findings to date regarding the steroidogenic and steroid metabolizing capacity of immune cells, the regulation of immune cell intracrine function, and the biological effects of immune-derived sex steroids, including the clinical relevance of immune cell intracrinology in fields other than metabolism. These findings will serve as the basis for a proposed model of immune cell intracrinology constituting a new frontier in metabolism research. MAJOR CONCLUSIONS: The development of highly sensitive mass spectrometric methods for sex steroid measurement and quantitation of metabolic flux now allows unprecedented ability to interrogate sex steroid production, metabolism and secretion by immune cells. Immune cell intracrinology could reveal key mechanisms underlying immune cell-mediated metabolic regulation.


Asunto(s)
Hormonas Esteroides Gonadales/metabolismo , Homeostasis , Linfocitos/inmunología , Macrófagos/inmunología , Animales , Humanos , Transducción de Señal
20.
J Clin Lipidol ; 12(4): 1072-1082, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29793828

RESUMEN

BACKGROUND: Exogenous testosterone decreases serum concentrations of high-density lipoprotein cholesterol (HDL-C) in men, but whether this alters cardiovascular risk is uncertain. OBJECTIVE: To investigate the effects of testosterone and estradiol on HDL particle concentration (HDL-Pima) and metrics of HDL function. METHODS: We enrolled 53 healthy men, 19 to 55 years of age, in a double-blinded, placebo-controlled, randomized trial. Subjects were rendered medically castrate using the GnRH receptor antagonist acyline and administered either (1) placebo gel, (2) low-dose transdermal testosterone gel (1.62%, 1.25 g), (3) full replacement dose testosterone gel (1.62%, 5 g) or (4) full replacement dose testosterone gel together with an aromatase inhibitor for 4 weeks. At baseline and end of treatment, serum HDL total macrophage and ABCA1-specific cholesterol efflux capacity (CEC), HDL-Pima and size, and HDL protein composition were determined. RESULTS: Significant differences in serum HDL-C were observed with treatment across groups (P = .01 in overall repeated measures ANOVA), with increases in HDL-C seen after both complete and partial testosterone deprivation. Medical castration increased total HDL-Pima (median [interquartile range] 19.1 [1.8] nmol/L at baseline vs 21.3 [3.1] nmol/L at week 4, P = .006). However, corresponding changes in total macrophage CEC and ABCA1-specific CEC were not observed. Change in serum 17ß-estradiol concentration correlated with change in total macrophage CEC (ß = 0.33 per 10 pg/mL change in serum 17ß-estradiol, P = .03). CONCLUSIONS: Testosterone deprivation in healthy men leads to a dissociation between changes in serum HDL-C and HDL CEC. Changes in serum HDL-C specifically due to testosterone exposure may not reflect changes in HDL function.


Asunto(s)
HDL-Colesterol/sangre , Oligopéptidos/administración & dosificación , Testosterona/administración & dosificación , Transportador 1 de Casete de Unión a ATP/metabolismo , Adulto , Inhibidores de la Aromatasa/administración & dosificación , Enfermedades Cardiovasculares/diagnóstico , Línea Celular , HDL-Colesterol/química , Método Doble Ciego , Estradiol/sangre , Humanos , Inyecciones Subcutáneas , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Tamaño de la Partícula , Efecto Placebo , Testosterona/sangre , Testosterona/farmacología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA