RESUMEN
Caldicellulosiruptor bescii is an extremely thermophilic, cellulolytic bacterium with a growth optimum at 78 °C and is the most thermophilic cellulose degrader known. It is an attractive target for biotechnological applications, but metabolic engineering will require an in-depth understanding of its primary pathways. A previous analysis of its genome uncovered evidence that C. bescii may have a completely uncharacterized aspect to its redox metabolism, involving a tungsten-containing oxidoreductase of unknown function. Herein, we purified and characterized this new member of the aldehyde ferredoxin oxidoreductase family of tungstoenzymes. We show that it is a heterodimeric glyceraldehyde-3-phosphate (GAP) ferredoxin oxidoreductase (GOR) present not only in all known Caldicellulosiruptor species, but also in 44 mostly anaerobic bacterial genera. GOR is phylogenetically distinct from the monomeric GAP-oxidizing enzyme found previously in several Archaea. We found that its large subunit (GOR-L) contains a single tungstopterin site and one iron-sulfur [4Fe-4S] cluster, that the small subunit (GOR-S) contains four [4Fe-4S] clusters, and that GOR uses ferredoxin as an electron acceptor. Deletion of either subunit resulted in a distinct growth phenotype on both C5 and C6 sugars, with an increased lag phase, but higher cell densities. Using metabolomics and kinetic analyses, we show that GOR functions in parallel with the conventional GAP dehydrogenase, providing an alternative ferredoxin-dependent glycolytic pathway. These two pathways likely facilitate the recycling of reduced redox carriers (NADH and ferredoxin) in response to environmental H2 concentrations. This metabolic flexibility has important implications for the future engineering of this and related species.
Asunto(s)
Biomasa , Firmicutes/metabolismo , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/metabolismo , Gliceraldehído 3-Fosfato/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis , Caldicellulosiruptor , Firmicutes/crecimiento & desarrollo , Gliceraldehído 3-Fosfato/metabolismo , Metaboloma , Oxidación-Reducción , FilogeniaRESUMEN
Terrestrial hot springs near neutral pH harbor extremely thermophilic bacteria from the genus Caldicellulosiruptor, which utilize the carbohydrates of lignocellulose for growth. These bacteria are technologically important because they produce novel, multi-domain glycoside hydrolases that are prolific at deconstructing microcrystalline cellulose and hemicelluloses found in plant biomass. Among other interesting features, Caldicellulosiruptor species have successfully adapted to bind specifically to lignocellulosic substrates via surface layer homology (SLH) domains associated with glycoside hydrolases and unique binding proteins (tapirins) present only in these bacteria. They also utilize a parallel pathway for conversion of glyceraldehyde-3-phosphate into 3-phosphoglycerate via a ferredoxin-dependent oxidoreductase that is conserved across the genus. Advances in the genetic tools for Caldicellulosiruptor bescii, including the development of a high-temperature kanamycin-resistance marker and xylose-inducible promoter, have opened the door for metabolic engineering applications and some progress along these lines has been reported. While several species of Caldicellulosiruptor can readily deconstruct lignocellulose, improvements in the amount of carbohydrate released and in the production of bio-based chemicals are required to successfully realize the biotechnological potential of these organisms.
Asunto(s)
Clostridiales , Biomasa , Biotecnología , Glicósido Hidrolasas , Manantiales de Aguas TermalesRESUMEN
Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.
Asunto(s)
Caldicellulosiruptor/genética , Ácidos Carboxílicos/metabolismo , Etanol/metabolismo , Lignina/metabolismo , Microorganismos Modificados Genéticamente , Panicum/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Biocombustibles/análisis , Biomasa , Fermentación , Oxidación-Reducción , Panicum/microbiología , Pyrococcus furiosus/enzimología , Thermoanaerobacter/enzimologíaRESUMEN
Regulated control of both homologous and heterologous gene expression is essential for precise genetic manipulation and metabolic engineering of target microorganisms. However, there are often no options available for inducible promoters when working with non-model microorganisms. These include extremely thermophilic, cellulolytic bacteria that are of interest for renewable lignocellulosic conversion to biofuels and chemicals. In fact, improvements to the genetic systems in these organisms often cease once transformation is achieved. This present study expands the tools available for genetically engineering Caldicellulosiruptor bescii, the most thermophilic cellulose-degrader known growing up to 90 °C on unpretreated plant biomass. A native xylose-inducible (P xi ) promoter was utilized to control the expression of the reporter gene (ldh) encoding lactate dehydrogenase. The P xi -ldh construct resulted in a both increased ldh expression (20-fold higher) and lactate dehydrogenase activity (32-fold higher) in the presence of xylose compared to when glucose was used as a substrate. Finally, lactate production during growth of the recombinant C. bescii strain was proportional to the initial xylose concentration, showing that tunable expression of genes is now possible using this xylose-inducible system. This study represents a major step in the use of C. bescii as a potential platform microorganism for biotechnological applications using renewable biomass.
Asunto(s)
Firmicutes/genética , Microbiología Industrial/métodos , Regiones Promotoras Genéticas , Xilosa/metabolismo , Biotransformación , Celulosa/metabolismo , Firmicutes/efectos de los fármacos , Firmicutes/crecimiento & desarrollo , Firmicutes/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Termotolerancia , Xilosa/farmacologíaRESUMEN
Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii Furthermore, a facile approach for assessing genomic stability in C. bescii has been established.IMPORTANCECaldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.
Asunto(s)
Genoma Bacteriano , Inestabilidad Genómica , Bacterias Grampositivas/genética , Lignina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Genética , Bacterias Grampositivas/metabolismo , CalorRESUMEN
Metabolic modeling was used to examine potential bottlenecks that could be encountered for metabolic engineering of the cellulolytic extreme thermophile Caldicellulosiruptor bescii to produce bio-based chemicals from plant biomass. The model utilizes subsystems-based genome annotation, targeted reconstruction of carbohydrate utilization pathways, and biochemical and physiological experimental validations. Specifically, carbohydrate transport and utilization pathways involving 160 genes and their corresponding functions were incorporated, representing the utilization of C5/C6 monosaccharides, disaccharides, and polysaccharides such as cellulose and xylan. To illustrate its utility, the model predicted that optimal production from biomass-based sugars of the model product, ethanol, was driven by ATP production, redox balancing, and proton translocation, mediated through the interplay of an ATP synthase, a membrane-bound hydrogenase, a bifurcating hydrogenase, and a bifurcating NAD- and NADP-dependent oxidoreductase. These mechanistic insights guided the design and optimization of new engineering strategies for product optimization, which were subsequently tested in the C. bescii model, showing a nearly 2-fold increase in ethanol yields. The C. bescii model provides a useful platform for investigating the potential redox controls that mediate the carbon and energy flows in metabolism and sets the stage for future design of engineering strategies aiming at optimizing the production of ethanol and other bio-based chemicals. IMPORTANCE The extremely thermophilic cellulolytic bacterium, Caldicellulosiruptor bescii, degrades plant biomass at high temperatures without any pretreatments and can serve as a strategic platform for industrial applications. The metabolic engineering of C. bescii, however, faces potential bottlenecks in bio-based chemical productions. By simulating the optimal ethanol production, a complex interplay between redox balancing and the carbon and energy flow was revealed using a C. bescii genome-scale metabolic model. New engineering strategies were designed based on an improved mechanistic understanding of the C. bescii metabolism, and the new designs were modeled under different genetic backgrounds to identify optimal strategies. The C. bescii model provided useful insights into the metabolic controls of this organism thereby opening up prospects for optimizing production of a wide range of bio-based chemicals.
RESUMEN
Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
RESUMEN
Caldicellulosiruptor bescii is an extremely thermophilic cellulolytic bacterium with great potential for consolidated bioprocessing of renewable plant biomass. Since it does not natively produce ethanol, metabolic engineering is required to create strains with this capability. Previous efforts involved the heterologous expression of the gene encoding a bifunctional alcohol dehydrogenase, AdhE, which uses NADH as the electron donor to reduce acetyl-CoA to ethanol. Acetyl-CoA produced from sugar oxidation also generates reduced ferredoxin but there is no known pathway for the transfer of electrons from reduced ferredoxin to NAD in C. bescii. Herein, we engineered a strain of C. bescii using a more stable genetic background than previously reported and heterologously-expressed adhE from Clostridium thermocellum (which grows optimally (Topt) at 60⯰C) with and without co-expression of the membrane-bound Rnf complex from Thermoanaerobacter sp. X514 (Topt 60⯰C). Rnf is an energy-conserving, reduced ferredoxin NAD oxidoreductase encoded by six genes (rnfCDGEAB). It was produced in a catalytically active form in C. bescii that utilized the largest DNA construct to be expressed in this organism. The new genetic lineage containing AdhE resulted in increased ethanol production compared to previous reports. Ethanol production was further enhanced by the presence of Rnf, which also resulted in decreased production of pyruvate, acetoin and an uncharacterized compound as unwanted side-products. Using crystalline cellulose as the growth substrate for the Rnf-containing strain, 75â¯mM (3.5â¯g/L) ethanol was produced at 60⯰C, which is 5-fold higher than that reported previously. This underlines the importance of redox balancing and paves the way for achieving even higher ethanol titers in C. bescii.