Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067918

RESUMEN

Optical methods such as ultraviolet/visible (UV/Vis) and fluorescence spectroscopy are well-established analytical techniques for in situ water quality monitoring. A broad range of bio-logical and chemical contaminants in different concentration ranges can be detected using these methods. The availability of results in real time allows a quick response to water quality changes. The measuring devices are configured as portable multi-parameter probes. However, their specification and data processing typically cannot be changed by users, or only with difficulties. Therefore, we developed a submersible sensor probe, which combines UV/Vis and fluorescence spectroscopy together with a flexible data processing platform. Due to its modular design in the hardware and software, the sensing system can be modified to the specific application. The dimension of the waterproof enclosure with a diameter of 100 mm permits also its application in groundwater monitoring wells. As a light source for fluorescence spectroscopy, we constructed an LED array that can be equipped with four different LEDs. A miniaturized deuterium-tungsten light source (200-1100 nm) was used for UV/Vis spectroscopy. A miniaturized spectrometer with a spectral range between 225 and 1000 nm permits the detection of complete spectra for both methods.

2.
Sensors (Basel) ; 20(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429188

RESUMEN

Usage of commercially available electrochemical gas sensors is currently limited by both the working range of the sensor with respect to temperature and humidity and the spikes in sensor response caused by sudden changes in temperature or humidity. Using a thermostatically controlled chamber, the sensor response of ammonia and hydrogen sulfide sensors was studied under extreme, rapidly changing levels of humidity with the aim of analyzing nebulized water samples. To protect the sensors from damage, the gas stream was alternated between a saturated gas stream from a Flow Blurring® nebulizer and a dry air stream. When switching between high and low humidity gas streams, the expected current spike was observed and mathematically described. Using this mathematical model, the signal response due to the change in humidity could be subtracted from the measured signal and the sensor response to the target molecule recorded. As the sensor response is determined by the model while the sensor is acclimatizing to the new humid conditions, a result is calculated faster than that by systems that rely on stable humidity. The use of the proposed mathematical model thus widens the scope of electrochemical gas sensors to include saturated gas streams, for example, from nebulized water samples, and gas streams with variable humidity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA