Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 107(2): 431-442, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35852900

RESUMEN

Wheat near-isogenic line AvSYr17NIL carrying Yr17, originally from Aegilops ventricosa for all-stage resistance to Puccinia striiformis f. sp. tritici, also shows nonrace-specific, high-temperature adult-plant (HTAP) resistance to the stripe rust pathogen. To separate and identify the HTAP resistance gene, seeds of AvSYr17NIL were treated with ethyl methanesulfonate. Mutant lines with only HTAP resistance were obtained, and one of the lines, M1225, was crossed with the susceptible recurrent parent Avocet S (AvS). Field responses of the F2 plants and F3 lines, together with the parents, were recorded at the adult-plant stage in Pullman and Mount Vernon, WA under natural P. striiformis f. sp. tritici infection. The parents and the F4 population were phenotyped with a Yr17-virulent P. striiformis f. sp. tritici race in the adult-plant stage under the high-temperature profile in the greenhouse. The phenotypic results were confirmed by testing the F5 population in the field under natural P. striiformis f. sp. tritici infection. The F2 data indicated a single recessive gene, temporarily named YrM1225, for HTAP resistance. The F4 lines were genotyped with Kompetitive allele-specific PCR markers converted from single-nucleotide polymorphism markers polymorphic between M1225 and AvS. The HTAP resistance gene was mapped on the short arm of chromosome 2A in an interval of 7.5 centimorgans using both linkage and quantitative trait locus mapping approaches. The separation of the HTAP resistance gene from Yr17 should improve the understanding and utilization of the different types of resistance.


Asunto(s)
Aegilops , Basidiomycota , Aegilops/genética , Sitios de Carácter Cuantitativo , Temperatura , Mapeo Cromosómico , Basidiomycota/fisiología
2.
Plant Dis ; 106(9): 2490-2497, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35077228

RESUMEN

Puccinia striiformis Westend. f. sp. tritici, commonly known as stripe rust, is an economically important pathogen of wheat (Triticum aestivum L.). The hexaploid club spring wheat cultivar JD contains both all-stage and adult plant resistance (APR) genes and exhibited consistent high resistance to stripe rust in the field. In this study, we aimed to identify the quantitative trait loci (QTL) for stripe rust resistance using a BC1F7 back-cross inbred-line population derived from the cross of JD and the recurrent parental line 'Avocet'. The population was phenotyped in field plots in Washington State at the Spillman Agronomy Farm in Pullman and Mount Vernon Northwest Washington Research and Extension Center in between 2014 and 2016. A major QTL tentatively designated as QYrJD.wsu-1B, conferring all-stage resistance in JD background, was identified and mapped at the telomere region on the short arm of chromosome 1B using the genotyping-by-sequencing method. This QTL was further characterized with simple sequence repeat (SSR) markers and found to have the greatest logarithm-of-the-odds score and phenotypic effect, using SSR marker wmc798 on chromosome 1BS. Seven additional QTLs associated with APR were identified in the JD background on chromosomes 2D, 3A, 3B, 4A, 6B, and 7A with partial phenotypic effects.


Asunto(s)
Basidiomycota , Sitios de Carácter Cuantitativo , Basidiomycota/genética , Mapeo Cromosómico , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Triticum/genética
3.
Plant Genome ; : e20513, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323003

RESUMEN

Exploration of novel alleles from ex situ collection is still limited in modern plant breeding as these alleles exist in genetic backgrounds of landraces that are not adapted to modern production environments. The practice of backcross breeding results in preservation of the adapted background of elite parents but leaves little room for novel alleles from landraces to be incorporated. Selection of adaptation-associated linkage blocks instead of the entire adapted background may allow breeders to incorporate more of the landrace's genetic background and to observe and evaluate novel alleles. Important adaptation-associated linkage blocks would have been selected over multiple cycles of breeding and hence are likely to exhibit signatures of positive selection or selective sweeps. We conducted genome-wide scan for candidate selective sweeps (CSS) using Fst, Rsb, and xpEHH in state, regional, spring, winter, and market-class population pairs and reported 446 CSS in 19 population pairs over time and 1033 CSS in 44 population pairs across geography and class. Further validation of these CSS in specific breeding programs may lead to identification of sets of loci that can be selected to restore population-specific adaptation in pre-breeding germplasms.

4.
Methods Mol Biol ; 2638: 9-21, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781632

RESUMEN

SNP-based genotyping has become the most effective approach to generate target-specific data for use in genetic studies. In this chapter, we will describe a high-throughput genotyping method that multiplexes hundreds to thousands of SNP markers in a two-step PCR protocol that can be customized to fit the specific needs of a study.


Asunto(s)
Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Genotipaje/métodos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
5.
Plant Genome ; 15(2): e20196, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35274473

RESUMEN

The United States is a major wheat producer with more than a century of wheat (Triticum aestivum L.) research and breeding. Using a panel of 753 historical and modern wheat varieties grown in the United States from the early 1800s to present day, we examined population structure and changes in genetic diversity. We used previously mapped high-quality single-nucleotide polymorphism (SNP) markers from the wheat 90K SNP array for genotyping. The wheat varieties had a slight hierarchical population structure based on growth habit and then by kernel color within spring varieties and by kernel hardness within winter varieties, which corresponds with geographical distribution of the varieties. Classifying varieties by market class, which is a combination of habit, hardness, and color, accounted for the greatest amount of variation (13.3%). We did not find evidence of decreased genetic diversity of either spring or winter varieties after the release of the first semidwarf wheat variety in 1961. On the contrary, northern and Pacific spring varieties, hard red spring (HRS), hard white spring (HWS), and soft white winter (SWW) had increases in both SNP and haplotype genetic diversity after 1961. The soft white spring (SWS) and soft red winter (SRW) market classes already had high genetic diversity in varieties before 1961 and showed some evidence of decreased diversity after 1961. Examination of temporal trends in genetic diversity also did not indicate long-term decline in diversity despite occasional fluctuations.


Asunto(s)
Fitomejoramiento , Triticum , Haplotipos , Polimorfismo de Nucleótido Simple , Triticum/química , Triticum/genética , Estados Unidos
6.
PLoS One ; 15(5): e0229207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32357171

RESUMEN

As genotyping technologies continue to evolve, so have their throughput and multiplexing capabilities. In this study, we demonstrate a new PCR-based genotyping technology that multiplexes thousands of single nucleotide polymorphism (SNP) markers with high-throughput capabilities in a simple protocol using a two-step PCR approach. The bioinformatic pipeline is user friendly and yields results that are intuitive to interpret. This method was tested on two recombinant inbred line (RIL) populations that had previous genotyping data from the Illumina Infinium assay for Triticum aestivum L. and the two data sets were found to be 100% in agreement. The genotyping by multiplexed sequencing (GMS) protocol multiplexes 1,656 wheat SNP markers, 207 syntenic barley SNP markers, and 49 known informative markers, which generate a possible 2,433 data points (including homoeoalleles and paralogs). This genotyping approach has the flexibility of being sequenced on either the Ion Torrent or Illumina next generation sequencing (NGS) platforms. Products are the result of direct sequencing and are therefore more reliable than scatter plot analysis which is the output of other genotyping methods such as the Illumina Infinium assay, komeptitive allele specific PCR and other like technologies.


Asunto(s)
Genómica , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Triticum/genética , Alelos , Biología Computacional , Genotipo , Polimorfismo de Nucleótido Simple/genética , Triticum/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA