Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Gen Virol ; 103(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35594121

RESUMEN

In vivo nucleic expression technologies using DNA or mRNA offer several advantages for recombinant gene expression. Their inherent ability to generate natively expressed recombinant proteins and antigens allows these technologies to mimic foreign gene expression without infection. Furthermore, foreign nucleic acid fragments have an inherent ability to act as natural immune adjuvants and stimulate innate pathogen- and DNA damage-associated receptors that are responsible for activating pathogen-associated molecular pattern (PAMP) and DNA damage-associated molecular pattern (DAMP) signalling pathways. This makes nucleic-acid-based expression technologies attractive for a wide range of vaccine and oncolytic immunotherapeutic uses. Recently, RNA vaccines have demonstrated their efficacy in generating strong humoral and cellular immune responses for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). DNA vaccines, which are more stable and easier to manufacture, generate similar immune responses to RNA, but typically exhibit lower immunogenicity. Here we report on a novel method of constructing self-amplifying DNA expression vectors that have the potential to amplify and enhance gene/antigen expression at a cellular level by increasing per cell gene copy numbers, boost genomic adjuvating effects and mitigate through replication many of the problems faced by non-replicating vectors such as degradation, methylation and gene silencing. These vectors employ a viral origin rolling circle replication cycle in mammalian host cells that amplifies the vector and gene of interest (GOI) copy number, maintaining themselves as nuclear episomes. We show that these vectors maintain persistently elevated GOI expression levels at the cellular level and induce morphological cellular alterations synonymous with increased cellular stress.


Asunto(s)
COVID-19 , Circovirus , Vacunas de ADN , Animales , Circovirus/genética , Vectores Genéticos/genética , Mamíferos , SARS-CoV-2 , Vacunas de ADN/genética
2.
Biotechnol Bioeng ; 119(10): 2919-2937, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781691

RESUMEN

Heterologous glycoprotein production relies on host glycosylation-dependent folding. When the biosynthetic machinery differs from the usual expression host, there is scope to remodel the assembly pathway to enhance glycoprotein production. Here we explore the integration of chaperone coexpression with glyco-engineering to improve the production of a model HIV-1 envelope antigen. Calreticulin was coexpressed to support protein folding together with Leishmania major STT3D oligosaccharyltransferase, to improve glycan occupancy, RNA interference to suppress the formation of truncated glycans, and Nicotiana benthamiana plants lacking α1,3-fucosyltransferase and ß1,2-xylosyltransferase was used as an expression host to prevent plant-specific complex N-glycans forming. This approach reduced the formation of undesired aggregates, which predominated in the absence of glyco-engineering. The resulting antigen also exhibited increased glycan occupancy, albeit to a slightly lower level than the equivalent mammalian cell-produced protein. The antigen was decorated almost exclusively with oligomannose glycans, which were less processed compared with the mammalian protein. Immunized rabbits developed comparable immune responses to the plant-produced and mammalian cell-derived antigens, including the induction of autologous neutralizing antibodies when the proteins were used to boost DNA and modified vaccinia Ankara virus-vectored vaccines. This study demonstrates that engineering glycosylation-directed folding offers a promising route to enhance the production of complex viral glycoproteins in plants.


Asunto(s)
Anticuerpos Neutralizantes , Infecciones por VIH , Animales , Antígenos Virales/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Anticuerpos Anti-VIH , Mamíferos/metabolismo , Polisacáridos/metabolismo , Conejos
3.
Nanotechnology ; 33(48)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35882111

RESUMEN

Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.


Asunto(s)
VIH-1 , Nanopartículas , Vacunas , Animales , Anticuerpos ampliamente neutralizantes , Células HEK293 , Humanos , Proyectos Piloto , Conejos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
4.
Plant Biotechnol J ; 18(10): 2109-2117, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32096288

RESUMEN

Plant molecular farming (PMF) is rapidly gaining traction as a viable alternative to the currently accepted paradigm of producing biologics. While the platform is potentially cheaper and more scalable than conventional manufacturing systems, expression yields and appropriate post-translational modifications along the plant secretory pathway remain a challenge for certain proteins. Viral fusion glycoproteins in particular are often expressed at low yields in plants and, in some cases, may not be appropriately processed. Recently, however, transiently or stably engineering the host plant has shown promise as a strategy for producing heterologous proteins with more complex maturation requirements. In this study we investigated the co-expression of a suite of human chaperones to improve the production of a human immunodeficiency virus (HIV) type 1 soluble gp140 vaccine candidate in Nicotiana benthamiana plants. The co-expression of calreticulin (CRT) resulted in a dramatic increase in Env expression and ameliorated the endoplasmic reticulum (ER) stress response - as evidenced by lower transcript abundance of representative stress-responsive genes. The co-expression of CRT similarly improved accumulation of glycoproteins from Epstein-Barr virus (EBV), Rift Valley fever virus (RVFV) and chikungunya virus (CHIKV), suggesting that the endogenous chaperone machinery may impose a bottleneck for their production. We subsequently successfully combined the co-expression of human CRT with the transient expression of human furin, to enable the production of an appropriately cleaved HIV gp140 antigen. These transient plant host engineering strategies are a promising approach for the production of high yields of appropriately processed and cleaved viral glycoproteins.

5.
J Virol ; 93(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30760570

RESUMEN

A vaccine regimen that elicits broadly neutralizing antibodies (bNAbs) is a major goal in HIV-1 vaccine research. In this study, we assessed the immunogenicity of the CAP256 superinfecting viral envelope (CAP256 SU) protein delivered by modified vaccinia virus Ankara (MVA) and DNA vaccines in different prime-boost combinations followed by a soluble protein (P) boost. The envelope protein (Env) contained a flexible glycine linker and I559P mutation. Trimer-specific bNAbs PGT145, PG16, and CAP256 VRC26_08 efficiently bound to the membrane-bound CAP256 envelope expressed on the surface of cells transfected or infected with the DNA and MVA vaccines. The vaccines were tested in two different vaccination regimens in rabbits. Both regimens elicited autologous tier 2 neutralizing antibodies (NAbs) and high-titer binding antibodies to the matching CAP256 Env and CAP256 V1V2 loop scaffold. The immunogenicity of DNA and MVA vaccines expressing membrane-bound Env alone was compared to that of Env stabilized in a more native-like conformation on the surface of Gag virus-like particles (VLPs). The inclusion of Gag in the DNA and MVA vaccines resulted in earlier development of tier 2 NAbs for both vaccination regimens. In addition, a higher proportion of the rabbits primed with DNA and MVA vaccines that included Gag developed tier 2 NAbs than did those primed with vaccine expressing Env alone. Previously, these DNA and MVA vaccines expressing subtype C mosaic HIV-1 Gag were shown to elicit strong T cell responses in mice. Here we show that when the CAP256 SU envelope protein is included, these vaccines elicit autologous tier 2 NAbs.IMPORTANCE A vaccine is urgently needed to combat HIV-1, particularly in sub-Saharan Africa, which remains disproportionately affected by the AIDS pandemic and accounts for the majority of new infections and AIDS-related deaths. In this study, two different vaccination regimens were compared. Rabbits that received two DNA primes followed by two modified vaccinia virus Ankara (MVA) and two protein inoculations developed better immune responses than those that received two MVA and three protein inoculations. In addition, DNA and MVA vaccines that expressed mosaic Gag VLPs presenting a stabilized Env antigen elicited better responses than Env alone, which supports the inclusion of Gag VLPs in an HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1 , Inmunización Secundaria , Vacunas de ADN , Virus Vaccinia , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Femenino , Células HEK293 , VIH-1/genética , VIH-1/inmunología , Humanos , Conejos , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
6.
Plant Cell Rep ; 39(9): 1115-1127, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32333151

RESUMEN

KEY MESSAGE: This is the first evidence that replicating vectors can be successfully used for transient protein expression in BY-2 plant cell packs. Transient recombinant protein expression in plants and recently also plant cell cultures are of increasing interest due to the speed, safety and scalability of the process. Currently, studies are focussing on the design of plant virus-derived vectors to achieve higher amounts of transiently expressed proteins in these systems. Here we designed and tested replicating single and multi-cassette vectors that combine elements for enhanced replication and hypertranslation, and assessed their ability to express and particularly co-express proteins by Agrobacterium-mediated transient expression in tobacco BY-2 plant cell packs. Substantial yields of green and red fluorescent proteins of up to ~ 700 ng/g fresh mass were detected in the plant cells along with position-dependent expression. This is the first evidence of the ability of replicating vectors to transiently express proteins in BY-2 plant cell packs.


Asunto(s)
Vectores Genéticos , Nicotiana/genética , Proteínas Recombinantes/metabolismo , Agrobacterium/genética , Técnicas de Cultivo de Célula , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Replicón , Nicotiana/citología , Proteína Fluorescente Roja
7.
Plant Biotechnol J ; 17(9): 1751-1759, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30791210

RESUMEN

Porcine circovirus type 2 (PCV-2) is the main causative agent associated with a group of diseases collectively known as porcine circovirus-associated disease (PCAD). There is a significant economic strain on the global swine industry due to PCAD and the production of commercial PCV-2 vaccines is expensive. Plant expression systems are increasingly regarded as a viable technology to produce recombinant proteins for use as pharmaceutical agents and vaccines. However, successful production and purification of PCV-2 capsid protein (CP) from plants is an essential first step towards the goal of a plant-produced PCV-2 vaccine candidate. In this study, the PCV-2 CP was transiently expressed in Nicotiana benthamiana plants via agroinfiltration and PCV-2 CP was successfully purified using sucrose gradient ultracentrifugation. The CP self-assembled into virus-like particles (VLPs) resembling native virions and up to 6.5 mg of VLPs could be purified from 1 kg of leaf wet weight. Mice immunized with the plant-produced PCV-2 VLPs elicited specific antibody responses to PCV-2 CP. This is the first report describing the expression of PCV-2 CP in plants, the confirmation of its assembly into VLPs and the demonstration of their use to elicit a strong immune response in a mammalian model.


Asunto(s)
Proteínas de la Cápside/inmunología , Circovirus , Inmunogenicidad Vacunal , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/biosíntesis , Ratones , Plantas Modificadas Genéticamente , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Porcinos , Nicotiana/genética , Nicotiana/metabolismo
8.
BMC Biotechnol ; 18(1): 77, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30537953

RESUMEN

BACKGROUND: Rift Valley fever virus (RVFV), the causative agent of Rift Valley fever, is an enveloped single-stranded negative-sense RNA virus in the genus Phlebovirus, family Bunyaviridae. The virus is spread by infected mosquitoes and affects ruminants and humans, causing abortion storms in pregnant ruminants, high neonatal mortality in animals, and morbidity and occasional fatalities in humans. The disease is endemic in parts of Africa and the Arabian Peninsula, but is described as emerging due to the wide range of mosquitoes that could spread the disease into non-endemic regions. There are different tests for determining whether animals are infected with or have been exposed to RVFV. The most common serological test is antibody ELISA, which detects host immunoglobulins M or G produced specifically in response to infection with RVFV. The presence of antibodies to RVFV nucleocapsid protein (N-protein) is among the best indicators of RVFV exposure in animals. This work describes an investigation of the feasibility of producing a recombinant N-protein in Nicotiana benthamiana and using it in an ELISA. RESULTS: The human-codon optimised RVFV N-protein was successfully expressed in N. benthamiana via Agrobacterium-mediated infiltration of leaves. The recombinant protein was detected as monomers and dimers with maximum protein yields calculated to be 500-558 mg/kg of fresh plant leaves. The identity of the protein was confirmed by liquid chromatography-mass spectrometry (LC-MS) resulting in 87.35% coverage, with 264 unique peptides. Transmission electron microscopy revealed that the protein forms ring structures of ~ 10 nm in diameter. Preliminary data revealed that the protein could successfully differentiate between sera of RVFV-infected sheep and from sera of those not infected with the virus. CONCLUSIONS: To the best of our knowledge this is the first study demonstrating the successful production of RVFV N-protein as a diagnostic reagent by Agrobacterium-mediated transient heterologous expression in N. benthamiana. Preliminary testing of the antigen showed its ability to distinguish RVFV-positive animal sera from RVFV negative animal sera when used in an enzyme linked immunosorbent assay (ELISA). The cost-effective, scalable and simple production method has great potential for use in developing countries where rapid diagnosis of RVFV is necessary.


Asunto(s)
Antígenos Virales/genética , Nicotiana/genética , Proteínas de la Nucleocápside/genética , Fiebre del Valle del Rift/diagnóstico , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/metabolismo , Enfermedades de las Ovejas/diagnóstico , Animales , Antígenos Virales/sangre , Antígenos Virales/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Expresión Génica , Proteínas de la Nucleocápside/sangre , Proteínas de la Nucleocápside/metabolismo , Fiebre del Valle del Rift/sangre , Fiebre del Valle del Rift/virología , Ovinos , Enfermedades de las Ovejas/sangre , Enfermedades de las Ovejas/virología , Nicotiana/metabolismo
9.
Plant Biotechnol J ; 16(2): 442-450, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28650085

RESUMEN

African horse sickness (AHS) is a debilitating and often fatal viral disease affecting horses in much of Africa, caused by the dsRNA orbivirus African horse sickness virus (AHSV). Vaccination remains the single most effective weapon in combatting AHS, as there is no treatment for the disease apart from good animal husbandry. However, the only commercially available vaccine is a live-attenuated version of the virus (LAV). The threat of outbreaks of the disease outside its endemic region and the fact that the LAV is not licensed for use elsewhere in the world, have spurred attempts to develop an alternative safer, yet cost-effective recombinant vaccine. Here, we report the plant-based production of a virus-like particle (VLP) AHSV serotype five candidate vaccine by Agrobacterium tumefaciens-mediated transient expression of all four capsid proteins in Nicotiana benthamiana using the cowpea mosaic virus-based HyperTrans (CPMV-HT) and associated pEAQ plant expression vector system. The production process is fast and simple, scalable, economically viable, and most importantly, guinea pig antiserum raised against the vaccine was shown to neutralize live virus in cell-based assays. To our knowledge, this is the first report of AHSV VLPs produced in plants, which has important implications for the containment of, and fight against the spread of, this deadly disease.


Asunto(s)
Virus de la Enfermedad Equina Africana/inmunología , Agrobacterium tumefaciens/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Cobayas , Vacunas Virales/inmunología
10.
Plant Biotechnol J ; 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29890031

RESUMEN

Plant molecular farming offers a cost-effective and scalable approach to the expression of recombinant proteins which has been proposed as an alternative to conventional production platforms for developing countries. In recent years, numerous proofs of concept have established that plants can produce biologically active recombinant proteins and immunologically relevant vaccine antigens that are comparable to those made in conventional expression systems. Driving many of these advances is the remarkable plasticity of the plant proteome which enables extensive engineering of the host cell, as well as the development of improved expression vectors facilitating higher levels of protein production. To date, the only plant-derived viral glycoprotein to be tested in humans is the influenza haemagglutinin which expresses at ~50 mg/kg. However, many other viral glycoproteins that have potential as vaccine immunogens only accumulate at low levels in planta. A critical consideration for the production of many of these proteins in heterologous expression systems is the complexity of post-translational modifications, such as control of folding, glycosylation and disulphide bridging, which is required to reproduce the native glycoprotein structure. In this review, we will address potential shortcomings of plant expression systems and discuss strategies to optimally exploit the technology for the production of immunologically relevant and structurally authentic glycoproteins for use as vaccine immunogens.

11.
Plant Biotechnol J ; 16(2): 628-637, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28733985

RESUMEN

High-risk human papillomaviruses (HPVs) cause cervical cancer, and while there are good prophylactic vaccines on the market, these are ineffective against established infections, creating a clear need for therapeutic vaccines. The HPV E7 protein is one of the essential oncoproteins for the onset and maintenance of malignancy and is therefore an ideal therapeutic vaccine target. We fused the HPV-16 E7 protein to the Limulus polyphemus antilipopolysaccharide factor (LALF32-51 ), a small hydrophobic peptide that can penetrate cell membranes and that has immunomodulatory properties. LALF32-51 -E7 was transiently expressed in Nicotiana benthamiana, and we previously determined that it accumulated better when targeted to chloroplasts compared to being localized in the cytoplasm. Subsequently, we aimed to prove whether LALF32-51 -E7 was indeed associated with the chloroplasts by determining its subcellular localization. The LALF32-51 -E7 gene was fused to one encoding enhanced GFP to generate a LG fusion protein, and localization was determined by confocal laser scanning microscopy and transmission electron microscopy (TEM). The fluorescence observed from chloroplast-targeted LG was distinctively different from that of the cytoplasmic LG. Small spherical structures resembling protein bodies (PBs) were seen that clearly localized with the chloroplasts. Larger but less abundant PB-like structures were also seen for the cytoplasmic LG. PB-like structure formation was confirmed for both LG and LALF32-51 -E7 by TEM. LALF32-51 -E7 was indeed targeted to the chloroplasts by the chloroplast transit peptide used in this study, and it formed aggregated PB-like structures. This study could open a new avenue for the use of LALF32-51 as a PB-inducing peptide.


Asunto(s)
Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Cloroplastos/efectos de los fármacos , Papillomavirus Humano 16/inmunología , Papillomavirus Humano 16/metabolismo , Hojas de la Planta/genética , Nicotiana/genética
12.
Plant Biotechnol J ; 16(10): 1811-1821, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29509998

RESUMEN

Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)-like cell death, accompanied by H2 O2 generation and increased PR1 expression. Mannose-binding lectins surfactant protein D (SP-D), cyanovirin-N (CV-N) and human mannose-binding lectin (hMBL) also induce salicylic acid (SA)-dependent HR-like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α-xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co-expression of SA-degrading enzyme NahG, providing strategies for enhancing expression of oligomannose-binding lectins in plants.


Asunto(s)
Nicotiana/metabolismo , Lectinas de Plantas/metabolismo , Muerte Celular , Lectinas de Plantas/genética , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo , Vías Secretoras
13.
Vet Res ; 49(1): 105, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30309390

RESUMEN

African horse sickness (AHS) is caused by multiple serotypes of the dsRNA AHSV and is a major scourge of domestic equids in Africa. While there are well established commercial live attenuated vaccines produced in South Africa, risks associated with these have encouraged attempts to develop new and safer recombinant vaccines. Previously, we reported on the immunogenicity of a plant-produced AHS serotype 5 virus-like particle (VLP) vaccine, which stimulated high titres of AHS serotype 5-specific neutralizing antibodies in guinea pigs. Here, we report a similar response to the vaccine in horses. This is the first report demonstrating the safety and immunogenicity of plant-produced AHS VLPs in horses.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana/prevención & control , Anticuerpos Antivirales/inmunología , Nicotiana/metabolismo , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Caballos , Vacunas Atenuadas/inmunología
14.
Int J Mol Sci ; 19(1)2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29301255

RESUMEN

Horseradish peroxidase (HRP) is a commercially important reagent enzyme used in molecular biology and in the diagnostic product industry. It is typically purified from the roots of the horseradish (Armoracia rusticana); however, this crop is only available seasonally, yields are variable and often low, and the product is a mixture of isoenzymes. Engineering high-level expression in transiently transformed tobacco may offer a solution to these problems. In this study, a synthetic Nicotiana benthamiana codon-adapted full-length HRP isoenzyme gene as well as C-terminally truncated and both N- and C-terminally truncated versions of the HRP C gene were synthesized, and their expression in N. benthamiana was evaluated using an Agrobacterium tumefaciens-mediated transient expression system. The influence on HRP C expression levels of co-infiltration with a silencing suppressor (NSs) construct was also evaluated. Highest HRP C levels were consistently obtained using either the full length or C-terminally truncated HRP C constructs. HRP C purification by ion exchange chromatography gave an overall yield of 54% with a Reinheitszahl value of >3 and a specific activity of 458 U/mg. The high level of HRP C production in N. benthamiana in just five days offers an alternative, viable, and scalable system for production of this commercially significant enzyme.


Asunto(s)
Peroxidasa de Rábano Silvestre/genética , Nicotiana/genética , Codón/genética , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/enzimología , Nicotiana/metabolismo
15.
J Gen Virol ; 98(9): 2329-2338, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28885140

RESUMEN

The preparation of infectious beak and feather disease circovirus virions (BFDV) has until now relied on the extraction of virus from whole tissue of deceased or euthanized parrots known to be infected with the virus. Extraction from diseased tissue is necessary, as the virus has yet to be grown in vitro using tissue-cultured cells from any source. While infectious DNA clones have been synthesized for porcine and duck circoviruses, and both replicate in host cells and result in active viral infection in animals, this has not been shown for BFDV. The aim of this study was to prepare an infectious BFDV genomic clone that could be used as challenge material in birds for vaccine testing. A putatively infectious BFDV genomic clone was designed and tested in mammalian cell culture, and in the plant Nicotiana benthamiana in the presence of plant-specific ssDNA geminivirus replication components. Replication was assessed using rolling-circle amplification, qPCR, replication-deficient clones and rescue plasmids. We showed that a synthetic partially dimeric BFDV genomic clone self-replicated when transfected into 293TT mammalian cells, and was also replicated in N. benthamiana in the presence of geminivirus replication elements. This is the first report of a BFDV genome replicating in any cell system, and the first report of a circovirus replicating with the aid of a geminivirus in a plant. Both of these developments could open up possibilities for making reagents and vaccines for BFDV, testing vaccine efficacy and investigating viral replication using rationally designed artificial genomes.


Asunto(s)
Infecciones por Circoviridae/virología , Circovirus/fisiología , ADN Viral/genética , Nicotiana/virología , Animales , Línea Celular , Circovirus/genética , Circovirus/crecimiento & desarrollo , Replicación del ADN , ADN Viral/síntesis química , ADN Viral/metabolismo , Células HEK293 , Humanos , Filogenia , Porcinos , Replicación Viral
16.
BMC Biotechnol ; 17(1): 47, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28558675

RESUMEN

BACKGROUND: Bluetongue is a disease of domestic and wild ruminants caused by bluetongue virus serotypes (BTV), which have caused serious outbreaks worldwide. Commercially available vaccines are live-attenuated or inactivated virus strains: these are effective, but there is the risk of reversion to virulence or reassortment with circulating strains for live virus, and residual live virus for the inactivated vaccines. The live-attenuated virus vaccines are not able to distinguish naturally infected animals from vaccinated animals (DIVA compliant). Recombinant vaccines are preferable to minimize the risks associated with these vaccines, and would also enable the development of candidate vaccines that are DIVA-compliant. RESULTS: In this study, two novel protein body (PB) plant-produced vaccines were developed, Zera®-VP2ep and Zera®-VP2. Zera®-VP2ep contained B-cell epitope sequences of multiple BTV serotypes and Zera®-VP2 contained the full-length BTV-8 VP2 codon-optimised sequence. In addition to fulfilling the DIVA requirement, Zera®-VP2ep was aimed at being multivalent with the ability to stimulate an immune response to several BTV serotypes. Both these candidate vaccines were successfully made in N. benthamiana via transient Agrobacterium-mediated expression, and in situ TEM analysis showed that the expressed proteins accumulated within the cytoplasm of plant cells in dense membrane-defined PBs. The peptide sequences included in Zera®-VP2ep contained epitopes that bound antibodies produced against native VP2. Preliminary murine immunogenicity studies showed that the PB vaccine candidates elicited anti-VP2 immune responses in mice without the use of adjuvant. CONCLUSIONS: These proof of concept results demonstrate that Zera®-VP2ep and Zera®-VP2 have potential as BTV vaccines and their development should be further investigated.


Asunto(s)
Virus de la Lengua Azul/genética , Epítopos/metabolismo , Nicotiana/metabolismo , Vacunas Sintéticas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Agrobacterium/genética , Agrobacterium/fisiología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Epítopos/inmunología , Inmunidad Humoral , Ratones , Microscopía Electrónica de Transmisión , Hojas de la Planta/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Ovinos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
17.
Virol J ; 14(1): 174, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28893289

RESUMEN

BACKGROUND: Beak and feather disease virus (BFDV) is an important disease causing agent affecting psittacines. BFDV is highly infectious and can present as acute, chronic or subclinical disease. The virus causes immunodeficiency and is often associated with secondary infections. No commercial vaccine is available and yields of recombinant BFDV capsid protein (CP) expressed in insect cells and bacteria are yet to be seen as commercially viable, although both systems produced BFDV CP that could successfully assemble into virus-like particles (VLPs). Plants as expression systems are increasingly becoming favourable for the production of region-specific and niche market products. The aim of this study was to investigate the formation and potential for purification of BFDV VLPs in Nicotiana benthamiana. METHODS: The BFDV CP was transiently expressed in N. benthamiana using an Agrobacterium-mediated system and plant expression vectors that included a bean yellow dwarf virus (BeYDV)-based replicating DNA vector. Plant-produced BFDV CP was detected using immunoblotting. VLPs were purified using sucrose cushion and CsCl density gradient centrifugation and visualised using transmission electron microscopy. RESULTS: In this study we demonstrate that the BFDV CP can be successfully expressed in N. benthamiana, albeit at relatively low yield. Using a purification strategy based on centrifugation we demonstrated that the expressed CP can self-assemble into VLPs that can be detected using electron microscopy. These plant-produced BFDV VLPs resemble those produced in established recombinant expression systems and infectious virions. It is possible that the VLPs are spontaneously incorporating amplicon DNA produced from the replicating BeYDV plant vector. CONCLUSIONS: This is the first report of plant-made full-length BFDV CP assembling into VLPs. The putative pseudovirions could be used to further the efficacy of vaccines against BFDV.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/aislamiento & purificación , Circovirus/fisiología , Expresión Génica , Nicotiana , Proteínas Recombinantes/aislamiento & purificación , Ensamble de Virus , Animales , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Centrifugación por Gradiente de Densidad , Circovirus/genética , Circovirus/aislamiento & purificación , Circovirus/ultraestructura , Vectores Genéticos , Microscopía Electrónica de Transmisión , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/virología , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/metabolismo
18.
J Virol ; 88(14): 7843-51, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24789787

RESUMEN

Although homologous recombination can potentially provide viruses with vastly more evolutionary options than are available through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious, neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own "lethally recombinant." Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident, therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains. Importance: Recombination between viruses can generate strains with enhanced pathological properties but also runs the risk of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.


Asunto(s)
Adaptación Biológica , Recombinación Homóloga , Virus de la Veta de Maíz/genética , Viabilidad Microbiana , ADN Viral/química , ADN Viral/genética , Evolución Molecular , Virus de la Veta de Maíz/fisiología , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN , Zea mays/virología
19.
Curr Top Microbiol Immunol ; 375: 19-45, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-22038412

RESUMEN

Plant viruses with ssRNA genomes provide a unique opportunity for generating expression vehicles for biopharming in plants, as constructs containing only the replication origin, with the replication-associated protein (Rep) gene provided in cis or in trans, can be replicationally amplified in vivo by several orders of magnitude, with significant accompanying increases in transcription and expression of gene(s) of interest. Appropriate replicating vectors or replicons may be derived from several different generic geminiviruses (family Geminiviridae) or nanoviruses (family Nanoviridae), for potential expression of a wide range of single or even multiple products in a wide range of plant families. The use of vacuum or other infiltration of whole plants by Agrobacterium tumefaciens suspensions has allowed the development of a set of expression vectors that rival the deconstructed RNA virus vectors in their yield and application, with some potential advantages over the latter that still need to be explored. Several modern applications of ssDNA plant vectors and their future potential will be discussed.


Asunto(s)
ADN de Cadena Simple/genética , Geminiviridae/genética , Vectores Genéticos , Nanovirus/genética , Replicación Viral
20.
Virol J ; 12: 205, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26626122

RESUMEN

BACKGROUND: Human rotaviruses are the main cause of severe gastroenteritis in children and are responsible for over 500 000 deaths annually. There are two live rotavirus vaccines currently available, one based on human rotavirus serotype G1P[8], and the other a G1-G4 P[8] pentavalent vaccine. However, the recent emergence of the G9 and other novel rotavirus serotypes in Africa and Asia has prompted fears that current vaccines might not be fully effective against these new varieties. RESULTS: We report an effort to develop an affordable candidate rotavirus vaccine against the new emerging G9P[6] (RVA/Human-wt/ZAF/GR10924/1999/G9P[6]) strain. The vaccine is based on virus-like particles which are both highly immunogenic and safe. The vaccine candidate was produced in Nicotiana benthamiana by transient expression, as plants allow rapid production of antigens at lower costs, without the risk of contamination by animal pathogens. Western blot analysis of plant extracts confirmed the successful expression of two rotavirus capsid proteins, VP2 and VP6. These proteins assembled into VLPs resembling native rotavirus particles when analysed by transmission electron microscopy (TEM). Expression of the rotavirus glycoprotein VP7 and the spike protein VP4 was also tried. However, VP7 expression caused plant wilting during the course of the time trial and expression could never be detected for either protein. We therefore created three fusion proteins adding the antigenic part of VP4 (VP8*) to VP6 in an attempt to produce more appropriately immunogenic particles. Fusion protein expression in tobacco plants was detected by western blot using anti-VP6 and anti-VP4 antibodies, but no regular particles were observed by TEM, even when co-expressed with VP2. CONCLUSION: Our results suggest that the rotavirus proteins produced in N. benthamiana are candidates for a subunit vaccine specifically for the G9P[6] rotavirus strain. This could be more effective in developing countries, thereby possibly providing a higher overall efficacy for the existing vaccines. The production of rotavirus proteins in plants would probably result in lower manufacturing costs, making it more affordable for developing countries. Further investigation is required to evaluate the immunogenic potential of the VLPs and fusion proteins created in this study.


Asunto(s)
Genotipo , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/inmunología , Rotavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Gastroenteritis/prevención & control , Gastroenteritis/virología , Humanos , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Rotavirus/clasificación , Rotavirus/genética , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/genética , Vacunas contra Rotavirus/aislamiento & purificación , Análisis de Secuencia de ADN , Nicotiana/genética , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/aislamiento & purificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA