Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593913

RESUMEN

Experiencing some early life adversity can have an "inoculating" effect that promotes resilience in adulthood. However, the mechanisms underlying stress inoculation are unknown, and animal models are lacking. Here we used the limited bedding and nesting (LBN) model of adversity to evaluate stress inoculation of addiction-related phenotypes. In LBN, pups from postnatal days 2 to 9 and their dams were exposed to a low-resource environment. In adulthood, they were tested for addiction-like phenotypes and compared to rats raised in standard housing conditions. High levels of impulsivity are associated with substance abuse, but in males, LBN reduced impulsive choice compared to controls. LBN males also self-administered less morphine and had a lower breakpoint on a progressive ratio reinforcement schedule than controls. These effects of LBN on addiction-related behaviors were not found in females. Because the nucleus accumbens (NAc) mediates these behaviors, we tested whether LBN altered NAc physiology in drug-naïve and morphine-exposed rats. LBN reduced the frequency of spontaneous excitatory postsynaptic currents in males, but a similar effect was not observed in females. Only in males did LBN prevent a morphine-induced increase in the AMPA/NMDA ratio. RNA sequencing was performed to delineate the molecular signature in the NAc associated with LBN-derived phenotypes. LBN produced sex-specific changes in transcription, including in genes related to glutamate transmission. Collectively, these studies reveal that LBN causes a male-specific stress inoculation effect against addiction-related phenotypes. Identifying factors that promote resilience to addiction may reveal novel treatment options for patients.


Asunto(s)
Conducta Animal , Núcleo Accumbens/fisiopatología , Trastornos Relacionados con Opioides/prevención & control , Resiliencia Psicológica , Estrés Psicológico , Transcriptoma , Animales , Animales Recién Nacidos , Femenino , Regulación de la Expresión Génica , Masculino , Núcleo Accumbens/efectos de los fármacos , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Fenotipo , Ratas , Ratas Long-Evans , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Factores Sexuales
2.
BMC Plant Biol ; 19(1): 440, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640557

RESUMEN

BACKGROUND: In plants, host factors encoded by susceptibility (S) genes are indispensable for viral infection. Resistance is achieved through the impairment or the absence of those susceptibility factors. Many S genes have been cloned from model and crop species and a majority of them are coding for members of the eukaryotic translation initiation complex, mainly eIF4E, eIF4G and their isoforms. The aim of this study was to investigate the role of those translation initiation factors in susceptibility of stone fruit species to sharka, a viral disease due to Plum pox virus (PPV). RESULTS: For this purpose, hairpin-inducing silencing constructs based on Prunus persica orthologs were used to generate Prunus salicina (Japanese plum) 4E and 4G silenced plants by Agrobacterium tumefaciens-mediated transformation and challenged with PPV. While down-regulated eIFiso4E transgenic Japanese plums were not regenerated in our conditions, eIFiso4G11-, but not the eIFiso4G10-, silenced plants displayed durable and stable resistance to PPV. We also investigated the alteration of the si- and mi-RNA profiles in transgenic and wild-type Japanese plums upon PPV infection and confirmed that the newly generated small interfering (si) RNAs, which are derived from the engineered inverted repeat construct, are the major contributor of resistance to sharka. CONCLUSIONS: Our results indicate that S gene function of the translation initiation complex isoform is conserved in Prunus species. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of the different isoforms of proteins involved in this complex to breed for resistance to sharka in fruit trees.


Asunto(s)
Resistencia a la Enfermedad/genética , Factores Eucarióticos de Iniciación/metabolismo , Enfermedades de las Plantas/inmunología , Virus Eruptivo de la Ciruela/fisiología , Prunus/genética , Factores Eucarióticos de Iniciación/genética , Frutas/genética , Frutas/inmunología , Frutas/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Isoformas de Proteínas , Prunus/inmunología , Prunus/virología , Interferencia de ARN , ARN de Planta/genética , ARN Interferente Pequeño/genética , Árboles
3.
Horm Behav ; 111: 46-59, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30708031

RESUMEN

Early life exposure to a low security setting, characterized by a scarcity of resources and limited food access, increases the risk for psychiatric illness and metabolic dysfunction. We utilized a translational rat model to mimic a low security environment and determined how this manipulation affected offspring behavior, metabolism, and puberty. Because food insecurity in humans is associated with reduced access to healthy food options the "low security" rat manipulation combined a Western diet with exposure to a limited bedding and nesting manipulation (WD-LB). In this setting, dams were provided with limited nesting materials during the pups' early life (P2-P10). This manipulation was contrasted with standard rodent caging (SD) and environmental enrichment (EE), to model "medium security" and "high security" environments, respectively. To determine if transitioning from a low to high security environment improved outcomes, some juvenile WD-LB offspring were exposed to EE. Maternal care was impacted by these environments such that EE dams engaged in high quality care when on the nest, but spent less time on the nest than SD dams. Although WD-LB dams excessively chased their tails, they were very attentive to their pups, perhaps to compensate for limited resources. Offspring exposed to WD-LB only displayed subtle changes in behavior. However, WD-LB exposure resulted in significant metabolic dysfunction characterized by increased body weight, precocious puberty and alterations in the hypothalamic kisspeptin system. These negative effects of WD-LB on puberty and weight regulation were mitigated by EE exposure. Collectively, these studies suggest that both compensatory maternal care and juvenile enrichment can reduce the impact of a low security environment. Moreover, they highlight how utilizing diverse models of resource (in)stability can reveal mechanisms that confer vulnerability and resilience to early life stress.


Asunto(s)
Vivienda para Animales , Conducta Materna/fisiología , Maduración Sexual/fisiología , Medio Social , Estrés Psicológico/complicaciones , Animales , Peso Corporal/fisiología , Modelos Animales de Enfermedad , Femenino , Hipotálamo/metabolismo , Masculino , Conducta Materna/psicología , Estimulación Física/métodos , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/psicología
4.
Bioconjug Chem ; 29(3): 649-656, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29285931

RESUMEN

Enzymes are attractive as immunotherapeutics because they can catalyze shifts in the local availability of immunostimulatory and immunosuppressive signals. Clinical success of enzyme immunotherapeutics frequently hinges upon achieving sustained biocatalysis over relevant time scales. The time scale and location of biocatalysis are often dictated by the location of the substrate. For example, therapeutic enzymes that convert substrates distributed systemically are typically designed to have a long half-life in circulation, whereas enzymes that convert substrates localized to a specific tissue or cell population can be more effective when designed to accumulate at the target site. This Topical Review surveys approaches to improve enzyme immunotherapeutic efficacy via chemical modification, encapsulation, and immobilization that increases enzyme accumulation at target sites or extends enzyme half-life in circulation. Examples provided illustrate "replacement therapies" to restore deficient enzyme function, as well as "enhancement therapies" that augment native enzyme function via supraphysiologic doses. Existing FDA-approved enzyme immunotherapies are highlighted, followed by discussion of emerging experimental strategies such as those designed to enhance antitumor immunity or resolve inflammation.


Asunto(s)
Terapia Enzimática/métodos , Inmunoterapia/métodos , Animales , Antiinflamatorios/química , Antiinflamatorios/inmunología , Antiinflamatorios/uso terapéutico , Antineoplásicos/química , Antineoplásicos/inmunología , Antineoplásicos/uso terapéutico , Asparaginasa/química , Asparaginasa/inmunología , Asparaginasa/uso terapéutico , Biocatálisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/inmunología , Enzimas Inmovilizadas/uso terapéutico , Enfermedad de Fabry/inmunología , Enfermedad de Fabry/terapia , Enfermedad de Gaucher/inmunología , Enfermedad de Gaucher/terapia , Glucosilceramidasa/química , Glucosilceramidasa/inmunología , Glucosilceramidasa/uso terapéutico , Glicosilación , Humanos , Inmunoconjugados/química , Inmunoconjugados/inmunología , Inmunoconjugados/uso terapéutico , Inflamación/inmunología , Inflamación/terapia , Enfermedades por Almacenamiento Lisosomal/inmunología , Enfermedades por Almacenamiento Lisosomal/terapia , Neoplasias/inmunología , Neoplasias/terapia , alfa-Galactosidasa/química , alfa-Galactosidasa/inmunología , alfa-Galactosidasa/uso terapéutico
5.
Nature ; 466(7307): 752-5, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20581819

RESUMEN

The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.


Asunto(s)
Biodiversidad , Microbiología del Suelo , Suelo/análisis , Árboles/clasificación , Árboles/crecimiento & desarrollo , Clima Tropical , Animales , Biomasa , Simulación por Computador , Retroalimentación Fisiológica , Cadena Alimentaria , Insectos/fisiología , Modelos Biológicos , Panamá , Densidad de Población , Plantones/crecimiento & desarrollo , Especificidad de la Especie , Árboles/microbiología , Árboles/parasitología , Vertebrados/fisiología
6.
Transgenic Res ; 24(1): 43-60, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25011563

RESUMEN

The fungi Botrytis cinerea and Erysiphe necator are responsible for gray mold and powdery mildew diseases, respectively, which are among the most devastating diseases of grapes. Two endochitinase (ech42 and ech33) genes and one N-acetyl-ß-D-hexosaminidase (nag70) gene from biocontrol agents related to Trichoderma spp. were used to develop a set of 103 genetically modified (GM) 'Thompson Seedless' lines (568 plants) that were established in open field in 2004 and evaluated for fungal tolerance starting in 2006. Statistical analyses were carried out considering transgene, explant origin, and plant response to both fungi in the field and in detached leaf assays. The results allowed for the selection of the 19 consistently most tolerant lines through two consecutive years (2007-2008 and 2008-2009 seasons). Plants from these lines were grafted onto the rootstock Harmony and established in the field in 2009 for further characterization. Transgene status was shown in most of these lines by Southern blot, real-time PCR, ELISA, and immunostrips; the most tolerant candidates expressed the ech42-nag70 double gene construct and the ech33 gene from a local Hypocrea virens isolate. B. cinerea growth assays in Petri dishes supplemented with berry juices extracted from the most tolerant individuals of the selected population was inhibited. These results demonstrate that improved fungal tolerance can be attributed to transgene expression and support the iterative molecular and physiological phenotyping in order to define selected individuals from a population of GM grapevines.


Asunto(s)
Quitinasas/genética , Resistencia a la Enfermedad/genética , Plantas Modificadas Genéticamente/genética , beta-N-Acetilhexosaminidasas/genética , Botrytis/patogenicidad , Técnicas de Transferencia de Gen , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/microbiología , Trichoderma/enzimología , Trichoderma/genética , Vitis/genética , Vitis/crecimiento & desarrollo , Vitis/microbiología
7.
Virus Genes ; 49(2): 325-38, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24964777

RESUMEN

Gene silencing and large-scale small RNA analysis can be used to develop RNA interference (RNAi)-based resistance strategies for Plum pox virus (PPV), a high impact disease of Prunus spp. In this study, a pPPViRNA hairpin-inducing vector harboring two silencing motif-rich regions of the PPV coat protein (CP) gene was evaluated in transgenic Nicotiana benthamiana (NB) plants. Wild-type NB plants infected with a chimeric PPV virus (PPV::GFP) exhibited affected leaves with mosaic chlorosis congruent to GFP fluorescence at 21 day post-inoculation; transgenic lines depicted a range of phenotypes from fully resistant to susceptible. ELISA values and GFP fluorescence intensities were used to select transgenic-resistant (TG-R) and transgenic-susceptible (TG-S) lines for further characterization of small interfering RNAs (siRNAs) by large-scale small RNA sequencing. In infected TG-S and untransformed (WT) plants, the observed siRNAs were nearly exclusively 21- and 22-nt siRNAs that targeted the whole PPV::GFP genome; 24-nt siRNAs were absent in these individuals. Challenged TG-R plants accumulated a full set of 21- to 24-nt siRNAs that were primarily associated with the selected motif-rich regions, indicating that a trans-acting siRNAs process prevented viral multiplication. BLAST analysis identified 13 common siRNA clusters targeting the CP gene. 21-nt siRNA sequences were associated with the 22-nt siRNAs and the scarce 23- and 24-nt molecules in TG-S plants and with most of the observed 22-, 23-, and 24-nt siRNAs in TG-R individuals. These results validate the use of a multi-hot spot silencing vector against PPV and elucidate the molecules by which hairpin-inducing vectors initiate RNAi in vivo.


Asunto(s)
Silenciador del Gen , Interacciones Huésped-Patógeno , Nicotiana/virología , Enfermedades de las Plantas/virología , Virus Eruptivo de la Ciruela/crecimiento & desarrollo , Interferencia de ARN , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/genética
8.
Insects ; 15(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39057276

RESUMEN

In this first field survey of an entire bee fauna for any part of Peru, we report a total of 1796 bees belonging to 181 species or morphospecies in four families. The taxonomic impediment was pronounced with only 80 species of 181 that could be named. With such a high proportion of undetermined species, it is not possible to adequately compare pollinator communities across different studies, assess historical changes or analyze endemism patterns to document ecology, behavior and evolution of the species and genera. This information is required to provide a sound basis for policymakers to protect habitats for the conservation of native pollinators.

9.
Biofabrication ; 16(3)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38749416

RESUMEN

The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.


Asunto(s)
Fiebres Hemorrágicas Virales , Humanos , Fiebres Hemorrágicas Virales/virología , Animales , Células Endoteliales/patología , Endotelio Vascular , Modelos Biológicos
10.
Zookeys ; 1179: 157-168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731536

RESUMEN

The Crested-tailed deer mouse, Habromyslophurus, is one of seven arboreal species within the genus Habromys. Species of this genus are monotypic, relatively rare, and occur in low densities. Their geographical distribution is highly fragmented due to being restricted to montane cloud forest in Mesoamerica and they are of conservation concern. All Habromys species are endemic to Mexico, except H.lophurus, which is also distributed in Guatemala and El Salvador. In this study, we obtained and characterized the first mitogenome and several thousand nuclear ultraconserved elements (UCEs) of H.lophurus to determine its phylogenetic position within neotomine-peromyscine mice. Its mitogenome sequence (16,509 bp) is only the second complete mitogenome obtained for this poorly known genus. We also obtained the first nuclear genomic data for H.lophurus, including 3,654 UCE loci, as well as a partial mitogenome of H.simulatus (6,349 bp), and 2,186 UCE for the outgroup Holochilussciureus. Phylogenetic analyses that included our newly generated genomic data coupled with previously published data from other neotomine-peromyscine mice confirm the placement of H.lophurus, H.simulatus, and H.ixtlani within a highly supported clade. The Habromys clade was nested within a clade that also contains members of the genus Peromyscus and provides further support for the hypothesis of the paraphyly of Peromyscus. These genomic resources will contribute to future phylogenomic studies that aim to further elucidate the evolutionary history of this rare and critically endangered genus of rodents.

11.
Front Immunol ; 14: 1264599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162669

RESUMEN

Piscirickettsia salmonis is the most important health problem facing Chilean Aquaculture. Previous reports suggest that P. salmonis can survive in salmonid macrophages by interfering with the host immune response. However, the relevant aspects of the molecular pathogenesis of P. salmonis have been poorly characterized. In this work, we evaluated the transcriptomic changes in macrophage-like cell line SHK-1 infected with P. salmonis at 24- and 48-hours post-infection (hpi) and generated network models of the macrophage response to the infection using co-expression analysis and regulatory transcription factor-target gene information. Transcriptomic analysis showed that 635 genes were differentially expressed after 24- and/or 48-hpi. The pattern of expression of these genes was analyzed by weighted co-expression network analysis (WGCNA), which classified genes into 4 modules of expression, comprising early responses to the bacterium. Induced genes included genes involved in metabolism and cell differentiation, intracellular transportation, and cytoskeleton reorganization, while repressed genes included genes involved in extracellular matrix organization and RNA metabolism. To understand how these expression changes are orchestrated and to pinpoint relevant transcription factors (TFs) controlling the response, we established a curated database of TF-target gene regulatory interactions in Salmo salar, SalSaDB. Using this resource, together with co-expression module data, we generated infection context-specific networks that were analyzed to determine highly connected TF nodes. We found that the most connected TF of the 24- and 48-hpi response networks is KLF17, an ortholog of the KLF4 TF involved in the polarization of macrophages to an M2-phenotype in mammals. Interestingly, while KLF17 is induced by P. salmonis infection, other TFs, such as NOTCH3 and NFATC1, whose orthologs in mammals are related to M1-like macrophages, are repressed. In sum, our results suggest the induction of early regulatory events associated with an M2-like phenotype of macrophages that drives effectors related to the lysosome, RNA metabolism, cytoskeleton organization, and extracellular matrix remodeling. Moreover, the M1-like response seems delayed in generating an effective response, suggesting a polarization towards M2-like macrophages that allows the survival of P. salmonis. This work also contributes to SalSaDB, a curated database of TF-target gene interactions that is freely available for the Atlantic salmon community.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Perfilación de la Expresión Génica , Macrófagos/metabolismo , Factores de Transcripción/metabolismo , ARN/metabolismo , Mamíferos
12.
Arthritis Res Ther ; 25(1): 173, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723593

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is driven by low-grade inflammation, and controlling local inflammation may offer symptomatic relief. Here, we developed an indoleamine 2,3-dioxygenase and galectin-3 fusion protein (IDO-Gal3), where IDO increases the production of local anti-inflammatory metabolites and Gal3 binds carbohydrates to extend IDO's joint residence time. In this study, we evaluated IDO-Gal3's ability to alter OA-associated inflammation and pain-related behaviors in a rat model of established knee OA. METHODS: Joint residence was first evaluated with an analog Gal3 fusion protein (NanoLuc™ and Gal3, NL-Gal3) that produces luminescence from furimazine. OA was induced in male Lewis rats via a medial collateral ligament and medial meniscus transection (MCLT + MMT). At 8 weeks, NL or NL-Gal3 were injected intra-articularly (n = 8 per group), and bioluminescence was tracked for 4 weeks. Next, IDO-Gal3s's ability to modulate OA pain and inflammation was assessed. Again, OA was induced via MCLT + MMT in male Lewis rats, with IDO-Gal3 or saline injected into OA-affected knees at 8 weeks post-surgery (n = 7 per group). Gait and tactile sensitivity were then assessed weekly. At 12 weeks, intra-articular levels of IL6, CCL2, and CTXII were assessed. RESULTS: The Gal3 fusion increased joint residence in OA and contralateral knees (p < 0.0001). In OA-affected animals, both saline and IDO-Gal3 improved tactile sensitivity (p = 0.008), but IDO-Gal3 also increased walking velocities (p ≤ 0.033) and improved vertical ground reaction forces (p ≤ 0.04). Finally, IDO-Gal3 decreased intra-articular IL6 levels within the OA-affected joint (p = 0.0025). CONCLUSION: Intra-articular IDO-Gal3 delivery provided long-term modulation of joint inflammation and pain-related behaviors in rats with established OA.


Asunto(s)
Galectina 3 , Osteoartritis de la Rodilla , Masculino , Animales , Ratas , Ratas Endogámicas Lew , Indolamina-Pirrol 2,3,-Dioxigenasa , Interleucina-6 , Inflamación
13.
Res Sq ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131836

RESUMEN

Objective : Controlling joint inflammation can improve osteoarthritis (OA) symptoms; however, current treatments often fail to provide long-term effects. We have developed an indoleamine 2,3-dioxygenase and galectin-3 fusion protein (IDO-Gal3). IDO converts tryptophan to kynurenines, directing the local environment toward an anti-inflammatory state; Gal3 binds carbohydrates and extends IDO's joint residence time. In this study, we evaluated IDO-Gal3's ability to alter OA-associated inflammation and pain-related behaviors in a rat model of established knee OA. Methods : Joint residence was first evaluated with an analog Gal3 fusion protein (NanoLuc™ and Gal3, NL-Gal3) that produces luminescence from furimazine. OA was induced in male Lewis rats via a medial collateral ligament and medial meniscus transection (MCLT+MMT). At 8 weeks, NL or NL-Gal3 were injected intra-articularly (n=8 per group), and bioluminescence was tracked for 4 weeks. Next, IDO-Gal3's ability to modulate OA pain and inflammation was assessed. Again, OA was induced via MCLT+MMT in male Lewis rats, with IDO-Gal3 or saline injected into OA-affected knees at 8 weeks post-surgery (n=7 per group). Gait and tactile sensitivity were then assessed weekly. At 12 weeks, intra-articular levels of IL6, CCL2, and CTXII were assessed. Results : The Gal3 fusion increased joint residence in OA and contralateral knees (p<0.0001). In OA-affected animals, IDO-Gal3 improved tactile sensitivity (p=0.002), increased walking velocities (p≤0.033), and improved vertical ground reaction forces (p≤0.04). Finally, IDO-Gal3 decreased intra-articular IL6 levels within the OA-affected joint (p=0.0025). Conclusion : Intra-articular IDO-Gal3 delivery provided long-term modulation of joint inflammation and pain-related behaviors in rats with established OA.

14.
Nat Biomed Eng ; 7(9): 1156-1169, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37127708

RESUMEN

The treatment of chronic inflammation with systemically administered anti-inflammatory treatments is associated with moderate-to-severe side effects, and the efficacy of locally administered drugs is short-lived. Here we show that inflammation can be locally suppressed by a fusion protein of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO) and galectin-3 (Gal3). Gal3 anchors IDO to tissue, limiting the diffusion of IDO-Gal3 away from the injection site. In rodent models of endotoxin-induced inflammation, psoriasis, periodontal disease and osteoarthritis, the fusion protein remained in the inflamed tissues and joints for about 1 week after injection, and the amelioration of local inflammation, disease progression and inflammatory pain in the animals were concomitant with homoeostatic preservation of the tissues and with the absence of global immune suppression. IDO-Gal3 may serve as an immunomodulatory enzyme for the control of focal inflammation in other inflammatory conditions.


Asunto(s)
Galectina 2 , Indolamina-Pirrol 2,3,-Dioxigenasa , Animales , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Progresión de la Enfermedad
15.
Neurosci Biobehav Rev ; 137: 104638, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35341796

RESUMEN

Elevated impulsivity is a symptom shared by various psychiatric disorders such as substance use disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. However, impulsivity is not a unitary construct and impulsive behaviors fall into two subcategories: impulsive action and impulsive choice. Impulsive choice refers to the tendency to prefer immediate, small rewards over delayed, large rewards, whereas impulsive action involves difficulty inhibiting rash, premature, or mistimed behaviors. These behaviors are mediated by the mesocorticolimbic dopamine (DA) system, which consists of projections from the ventral tegmental area to the nucleus accumbens and prefrontal cortex. Early life stress (ELS) alters both impulsive choice and impulsive action in rodents. ELS also changes DA receptor expression, transmission, and activity within the mesocorticolimbic system. This review integrates the dopamine, impulsivity, and ELS literature to provide evidence that ELS alters impulsivity via inducing changes in the mesocorticolimbic DA system. Understanding how ELS affects brain circuits associated with impulsivity can help advance treatments aimed towards reducing impulsivity symptoms in a variety of psychiatric disorders.


Asunto(s)
Experiencias Adversas de la Infancia , Dopamina , Conducta de Elección , Dopamina/metabolismo , Humanos , Conducta Impulsiva , Núcleo Accumbens , Área Tegmental Ventral/metabolismo
16.
Gigascience ; 112022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36283679

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that are key players in the regulation of gene expression. In the past decade, with the increasing accessibility of high-throughput sequencing technologies, different methods have been developed to identify miRNAs, most of which rely on preexisting reference genomes. However, when a reference genome is absent or is not of high quality, such identification becomes more difficult. In this context, we developed BrumiR, an algorithm that is able to discover miRNAs directly and exclusively from small RNA (sRNA) sequencing (sRNA-seq) data. We benchmarked BrumiR with datasets encompassing animal and plant species using real and simulated sRNA-seq experiments. The results demonstrate that BrumiR reaches the highest recall for miRNA discovery, while at the same time being much faster and more efficient than the state-of-the-art tools evaluated. The latter allows BrumiR to analyze a large number of sRNA-seq experiments, from plants or animal species. Moreover, BrumiR detects additional information regarding other expressed sequences (sRNAs, isomiRs, etc.), thus maximizing the biological insight gained from sRNA-seq experiments. Additionally, when a reference genome is available, BrumiR provides a new mapping tool (BrumiR2reference) that performs an a posteriori exhaustive search to identify the precursor sequences. Finally, we also provide a machine learning classifier based on a random forest model that evaluates the sequence-derived features to further refine the prediction obtained from the BrumiR-core. The code of BrumiR and all the algorithms that compose the BrumiR toolkit are freely available at https://github.com/camoragaq/BrumiR.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Animales , MicroARNs/genética , MicroARNs/metabolismo , Programas Informáticos , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Pequeño no Traducido/genética
17.
Plants (Basel) ; 11(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145795

RESUMEN

In sweet cherry (Prunus avium), as in other temperate woody perennials, bud dormancy allows for survival in adverse environmental conditions during winter. During this process, environmental signals such as short days and/or low temperatures trigger internal signals that enable buds to become tolerant to the cold. The process involves tracking chilling units up to chilling the requirement fulfillment to resume growth, a transition involving transcriptional regulation, metabolic signaling, and epigenetic-related regulatory events. Massive sequencing of small RNAs was performed to identify miRNAs involved in sweet cherry dormancy by comparing their expression in field (regular seasonal) and controlled non-stop (continuous) chilling conditions. miRNAs highlighted by sequencing were validated using specific stem-loop PCR quantification, confirming expression patterns for known miRNAs such as miR156e, miR166c, miR172d, miR391, miR482c, and miR535b, as well as for newly proposed miRNAs. In silico prediction of the target genes was used to construct miRNA/target gene nodes. In particular, the involvement of the sweet cherry version for the miR156/SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN genes whose expression was opposite in the two conditions suggests their involvement on dormancy regulation in sweet cherry. miRNA levels indicate that the regulation of stress-related genes and hormone synthesis modulates the expression of calcium metabolism and cell development-associated genes. Understanding the regulatory networks involved in sweet cherry dormancy, particularly in the context of miRNA involvement, represents the first step in the development of new agricultural strategies that may help overcome the increasing challenges presented by global climate change.

18.
Neuropsychopharmacology ; 47(6): 1231-1239, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35102257

RESUMEN

Early life adversity can alter reproductive development in humans, changing the timing of pubertal onset and sexual activity. One common form of early adversity is limited access to resources. This adversity can be modeled in rats using the limited bedding/nesting model (LBN), in which dams and pups are placed in a low resource environment from pups' postnatal days 2-9. Our laboratory previously found that adult male rats raised in LBN conditions have elevated levels of plasma estradiol compared to control males. In females, LBN had no effect on plasma hormone levels, pubertal timing, or estrous cycle duration. Estradiol mediates male reproductive behaviors. Thus, here we compared reproductive behaviors in adult males exposed to LBN vs. control housing. LBN males acquired the suite of reproductive behaviors (mounts, intromissions, and ejaculations) more quickly than their control counterparts over 3 weeks of testing. However, there was no effect of LBN in males on puberty onset or masculinization of certain brain regions, suggesting LBN effects on estradiol and reproductive behaviors manifest after puberty. In male and female rats, we next used RNA sequencing to characterize LBN-induced transcriptional changes in the medial preoptic area (mPOA), which underlies male reproductive behaviors. LBN produced sex-specific alterations in gene expression, with many transcripts showing changes in opposite directions. Numerous transcripts altered by LBN in males are regulated by estradiol, linking hormonal changes to molecular changes in the mPOA. Pathway analysis revealed that LBN induced changes in neurosignaling and immune signaling in males and females, respectively. Collectively, these studies reveal novel neurobiological mechanisms by which early life adversity can alter reproductive strategies.


Asunto(s)
Área Preóptica , Conducta Reproductiva , Estrés Psicológico , Transcriptoma , Animales , Femenino , Masculino , Ratas , Estradiol/farmacología , Conducta Sexual Animal
19.
Astrobiology ; 22(3): 293-312, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34694925

RESUMEN

Microbial communities have been explored in various terrestrial subsurface ecosystems, showing metabolic potentials that could generate noteworthy morphological and molecular biosignatures. Recent advancements in bioinformatic tools have allowed for descriptions of novel and yet-to-be cultivated microbial lineages in different ecosystems due to the genome reconstruction approach from metagenomic data. Using shotgun metagenomic data, we obtained metagenome-assembled genomes related to cultivated and yet-to-be cultivated prokaryotic lineages from a silica and iron-rich cave (Monte Cristo) in Minas Gerais State, Brazil. The Monte Cristo Cave has been shown to possess a high diversity of genes involved with different biogeochemical cycles, including reductive and oxidative pathways related to carbon, sulfur, nitrogen, and iron. Three genomes were selected for pangenomic analysis, assigned as Truepera sp., Ca. Methylomirabilis sp., and Ca. Koribacter sp. based on their lifestyles (radiation resistance, anaerobic methane oxidation, and potential iron oxidation). These bacteria exhibit genes involved with multiple DNA repair strategies, starvation, and stress response. Because these groups have few reference genomes deposited in databases, our study adds important genomic information about these lineages. The combination of techniques applied in this study allowed us to unveil the potential relationships between microbial genomes and their ecological processes with the cave mineralogy and highlight the lineages involved with anaerobic methane oxidation, iron oxidation, and radiation resistance as functional models for the search for extant life-forms outside our planet in silica- and iron-rich environments and potentially on Mars.


Asunto(s)
Metagenoma , Microbiota , Brasil , Cuevas/microbiología , Metagenómica , Microbiota/genética , Filogenia
20.
PLoS One ; 17(3): e0264774, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35239740

RESUMEN

The Covid-19 outbreak challenged health systems around the world to design and implement cost-effective devices produced locally to meet the increased demand of mechanical ventilators worldwide. This study evaluates the physiological responses of healthy swine maintained under volume- or pressure-controlled mechanical ventilation by a mechanical ventilator implemented to bring life-support by automating a resuscitation bag and closely controlling ventilatory parameters. Physiological parameters were monitored in eight sedated animals (t0) prior to inducing deep anaesthesia, and during the next six hours of mechanical ventilation (t1-7). Hemodynamic conditions were monitored periodically using a portable gas analyser machine (i.e. BEecf, carbonate, SaO2, lactate, pH, PaO2, PaCO2) and a capnometer (i.e. ETCO2). Electrocardiogram, echocardiography and lung ultrasonography were performed to detect in vivo alterations in these vital organs and pathological findings from necropsy were reported. The mechanical ventilator properly controlled physiological levels of blood biochemistry such as oxygenation parameters (PaO2, PaCO2, SaO2, ETCO2), acid-base equilibrium (pH, carbonate, BEecf), and perfusion of tissues (lactate levels). In addition, histopathological analysis showed no evidence of acute tissue damage in lung, heart, liver, kidney, or brain. All animals were able to breathe spontaneously after undergoing mechanical ventilation. These preclinical data, supports the biological safety of the medical device to move forward to further evaluation in clinical studies.


Asunto(s)
Reanimación Cardiopulmonar/instrumentación , Respiración Artificial/instrumentación , Ventiladores Mecánicos , Animales , Automatización , Análisis de los Gases de la Sangre , COVID-19/complicaciones , COVID-19/patología , COVID-19/fisiopatología , Femenino , Hemodinámica , Masculino , Respiración , SARS-CoV-2/fisiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA