Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Strength Cond Res ; 37(1): 181-186, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515604

RESUMEN

ABSTRACT: Sabater Pastor, FS, Besson, T, Berthet, M, Varesco, G, Kennouche, D, Dandrieux, P-E, Rossi, J, and Millet, GY. Elite road vs. trail runners: comparing economy, biomechanics, strength, and power. J Strength Cond Res 37(1): 181-186, 2023-The purpose of this study was to determine the differences between road (ROAD) vs. trail (TRAIL) elite runners in terms of force-velocity profile (FVP), running biomechanics, lower-limb maximal isometric strength, cost of running (Cr), and training. Seventeen male elite athletes (10 TRAIL and 7 ROAD) participated in this study. Force-velocity profile was measured using a 2-sprint test on a cycle ergometer. Strength was assessed with a dynamometer measuring isometric maximum voluntary torque of the knee extensors and knee flexors. Biomechanics parameters (running kinematics and stiffness) were measured, and Cr was calculated at 10 and 14 km·h-1 at 0% slope and at 10 km·h-1 on a 10% slope on a treadmill. Athletes also reported their training duration during the previous year. Theoretical maximal torque (F0) and maximal power (Pmax) in the FVP were higher for TRAIL vs. ROAD (122 ± 13 vs. 99 ± 7 N·m, p = 0.001; and 726 ± 89 vs. 626 ± 44 W; p = 0.016). Cost of running was higher for TRAIL compared with ROAD on flat at 14 km·h-1 (4.32 ± 0.22 vs. 4.06 ± 0.29 J·kg-1·m-1; p = 0.047) but similar at 10 km·h-1 and uphill. No differences were found in maximal isometric strength or running biomechanics. ROAD spent 81% more time training than TRAIL (p = 0.0003). The specific training (i.e., "natural" resistance training) performed during graded running in trail runners and training on level surface at high speed may explain our results. Alternatively, it is possible that trail running selects stronger athletes because of the greater strength requirements of graded running.


Asunto(s)
Carrera , Masculino , Humanos , Fenómenos Biomecánicos , Rodilla , Atletas , Prueba de Esfuerzo
2.
J Strength Cond Res ; 37(7): 1470-1478, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347946

RESUMEN

ABSTRACT: Besson, T, Pastor, FS, Varesco, G, Berthet, M, Kennouche, D, Dandrieux, P-E, Rossi, J, and Millet, GY. Elite vs. experienced male and female trail runners: comparing running economy, biomechanics, strength, and power. J Strength Cond Res 37(7): 1470-1478, 2023-The increased participation in trail running (TR) races and the emergence of official international races have increased the performance level of the world best trail runners. The aim of this study was to compare cost of running (Cr) and biomechanical and neuromuscular characteristics of elite trail runners with their lower level counterparts. Twenty elite (10 females; ELITE) and 21 experienced (10 females; EXP) trail runners participated in the study. Cr and running biomechanics were measured at 10 and 14 km·h-1 on flat and at 10 km·h-1 with 10% uphill incline. Subjects also performed maximal isometric voluntary contractions of knee and hip extensors and knee flexors and maximal sprints on a cycle ergometer to assess the power-torque-velocity profile (PTVP). Athletes also reported their training volume during the previous year. Despite no differences in biomechanics, ELITE had a lower Cr than EXP (p < 0.05). Despite nonsignificant difference in maximal lower-limb power between groups, ELITE displayed a greater relative torque (p < 0.01) and lower maximal velocity (p < 0.01) in the PTVP. Females displayed shorter contact times (p < 0.01) compared with males, but no sex differences were observed in Cr (p > 0.05). No sex differences existed for the PTVP slope, whereas females exhibited lower relative torque (p < 0.01) and velocity capacities (p < 0.01) compared with males. Although not comprehensively assessing all determining factors of TR performance, those data evidenced level and sex specificities of trail runners in some factors of performance. Strength training can be suggested to lower level trail runners to improve Cr and thus TR performance.


Asunto(s)
Extremidad Inferior , Carrera , Humanos , Masculino , Femenino , Fenómenos Biomecánicos , Rodilla , Articulación de la Rodilla
3.
Eur J Appl Physiol ; 121(6): 1665-1675, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33666727

RESUMEN

PURPOSE: The effect of trail running competitions on cost of running (Cr) remains unclear and no study has directly examined the effect of distances in similar conditions on Cr. Accordingly, the aims of this study were to (i) assess the effect of trail running races of 40-170 km on Cr and (ii) to assess whether the incline at which Cr is measured influences changes in Cr. METHODS: Twenty trail runners completed races of < 100 km (SHORT) and 26 trail runners completed races of > 100 km (LONG) on similar courses and environmental conditions. Oxygen uptake, respiratory exchange ratio, ventilation, and blood lactate were measured before and after the events on a treadmill with 0% (FLAT) and 15% incline (UH) and Cr was calculated. RESULTS: Cr increased significantly after SHORT but not LONG races. There was no clear relationship between changes in Cr and changes in ventilation or blood lactate. There was a significant correlation (r = 0.75, p < 0.01) between changes in FLAT and UH Cr, and the change in Cr was not affected by the incline at which Cr was measured. CONCLUSION: The distance of the trail running race, but not the slope at which it is measured, influence the changes in Cr with fatigue. The mechanism by which Cr increases only in SHORT is not related to increased cost of breathing.


Asunto(s)
Fatiga Muscular/fisiología , Carrera/fisiología , Adulto , Metabolismo Energético/fisiología , Femenino , Humanos , Lactatos/sangre , Masculino , Consumo de Oxígeno/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Ventilación Pulmonar/fisiología
4.
Int J Sports Physiol Perform ; : 1-4, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897573

RESUMEN

PURPOSE: The aim of this study was to analyze the reliability and validity of the predicted distance-time relationship in the severe-intensity domain from a 3-minute all-out running test (3MT). METHODS: Twelve runners performed two 3MTs (test #1 and test #2) on an outdoor 400-m track after familiarization. Eighteen-hertz Global Positioning System data were used to estimate critical speed (CS) and distance covered above CS (D'). Time to cover 1200 and 3600 m (T1200 and T3600, respectively) was predicted using CS and D' estimates from each 3MT. Eight runners performed 2 time trials in a single visit to assess real T1200 and T3600. Intraclass correlation coefficients (ICCs) and standard errors of measurement were calculated for reliability analysis. RESULTS: Good to excellent reliability was found for CS, T1200, and T3600 estimates from 3MT (ICC > .95, standard error of measurement between 1.3% and 2.2%), and poor reliability was found for D' (ICC = .55, standard error of measurement = 27%). Predictions from 3MT were significantly correlated to actual T1200 (r = .87 and .85 for test #1 and test #2, respectively) and T3600 (r = .91 and .82 for test #1 and test #2, respectively). The calculation of error prediction showed a systematic error between predicted and real T3600 (6.4% and 7.8% for test #1 and test #2, respectively, P < .01) contrary to T1200 (P > .1). Random error was between 4.4% and 6.1% for both distances. CONCLUSIONS: Despite low reliability of D', 3MT yielded a reliable predicted distance-time relationship allowing repeated measures to evidence change with training adaptation. However, caution should be taken with prediction of performance potential of a single individual because of substantial random error and significant underestimation of T3600.

5.
Med Sci Sports Exerc ; 55(3): 389-397, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251372

RESUMEN

INTRODUCTION: Cost of locomotion (C L ) has been shown to increase after endurance running and cycling bouts. The main purpose of this study was to compare, in the same participants, the effect of both modalities on C L when matched for relative intensity and duration. METHODS: Seventeen recreational athletes performed two incremental tests in running and cycling to determine the first ventilatory threshold then two 3-h bouts of exercise at 105% of threshold, with gas exchange measurements taken for 10 min at the start, middle and end of the 3 h to calculate C L . Neuromuscular fatigue during isometric knee extensor contractions and force-velocity profile on a cycle ergometer were assessed before and immediately after the 3-h trials. RESULTS: C L significantly increased at mid (+3.7%, P = 0.006) and end (+7.4%, P < 0.001) of exercise for cycling compared with start, whereas it did not change with time for running. Cardio-respiratory and metabolic variables changed similarly for cycling and running, therefore not explaining the time-course differences in C L between modalities. Changes in C L during cycling correlated significantly with loss of maximal force extrapolated from the force-velocity profile ( r = 0.637, P = 0.006) and changes in cadence ( r = 0.784, P < 0.001). CONCLUSIONS: The type of locomotion influences the effects of exercise on energy cost because 3 h of exercise at the same relative intensity caused a significant increase of cycling C L , and no changes in running C L . The changes in C L in cycling are likely due, at least in part, to fatigue in the locomotor muscles.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Humanos , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Ergometría , Prueba de Esfuerzo , Locomoción , Ciclismo/fisiología , Resistencia Física/fisiología
6.
Int J Sports Physiol Perform ; 18(3): 300-305, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754060

RESUMEN

PURPOSE: Previous research has shown that maximal oxygen uptake (VO2max) significantly influences performance in trail-running races up to 120 km but not beyond. Similarly, the influence of running economy on performance in ultratrail remains unclear. The aim of our study was, therefore, to determine the physiological predictors of performance in a 166-km trail-running race. METHODS: Thirty-three experienced trail runners visited the laboratory 4 to 8 weeks before the race to undergo physiological testing including an incremental treadmill test and strength assessments. Correlations and regression analyses were used to determine the physiological variables related to performance. RESULTS: Average finishing time was 37:33 (5:52) hours. Performance correlated significantly with VO2max (r = -.724, P < .001), velocity at VO2max (r = -.813, P < .001), lactate turn point expressed as percentage of VO2max (r = -.510, P = .018), cost of running (r = -.560, P = .008), and body fat percentage (r = .527, P = .012) but was not related to isometric strength. Regression analysis showed that velocity at VO2max predicted 65% of the variability in performance (P < .001), while a model combining VO2max and cost of running combined predicted 62% of the variability (P = .008). CONCLUSION: This is the first study to show that VO2max and velocity at VO2max are significant predictors of performance in a 166-km trail-running race. This suggests that ultratrail runners should focus on the development of these 2 qualities to optimize their race performance.


Asunto(s)
Consumo de Oxígeno , Carrera , Humanos , Consumo de Oxígeno/fisiología , Carrera/fisiología , Ácido Láctico , Prueba de Esfuerzo , Análisis de Regresión
7.
Eur J Sport Sci ; 22(12): 1836-1846, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34663199

RESUMEN

The goal of this study was to analyse the effects of ground technicity on cardio-respiratory and biomechanical responses during uphill running. Ten experienced male trail-runners ran ∼10.5 min at racing pace on two trails with different (high and low) a priori technicity levels. These two runs were replicated (same slope, velocity, and distance) indoor on a motor-driven treadmill. Oxygen uptake, minute ventilation (V̇E), heart rate as well as step frequency and medio-lateral feet accelerations (i.e. objective indices of uneven terrain running patterns adjustments) were continuously measured throughout all sessions. Rating of perceived exertion (RPE) and perceived technicity were assessed at the end of each bout. Oxygen cost of running (O2Cr) (+10.5%; p < 0.001), V̇E (+21%; p < 0.004) and the range and variability of feet medio-lateral accelerations (+116% and +134%, respectively; p < 0.001), were significantly greater when running on trail compared to the treadmill, regardless of the a priori technicity level. Despite perceived technicity being lower on treadmill (p < 0.001), RPE was not different between trail and treadmill runs (p < 0.68). It is concluded that running uphill on a trail vs. a treadmill significantly elevates both O2Cr and magnitude/variability of feet medio-lateral accelerations but no difference could be identified between trails of different a priori technicities. These results strengthen the need for trainers and race organisers to consider terrain technicity per se as a challenging cardio-respiratory and biomechanical component in uphill trail running.Highlights Ten experienced male trail-runners ran ∼10.5 min at racing pace on two trails with different a priori technicity levels. The two runs were replicated (same slope, velocity, and distance) indoor on a motor-driven treadmill.Oxygen cost of running (O2Cr), minute ventilation (V̇E) as well as medio-lateral feet accelerations (i.e. objective indices of uneven terrain running patterns adjustments) were continuously measured throughout all sessions. Rating of perceived exertion (RPE) and perceived technicity were assessed at the end of each bout.O2Cr (+10.5%; p < 0.001), V̇E (+21%; p < 0.004) and the magnitude and variability of feet medio-lateral accelerations (+116% and +134%, respectively; p < 0.001) were significantly greater when running on trail compared to treadmill, regardless of the a priori technicity level. Despite O2Cr being different between trail and treadmill runs, RPE was not.Thus, running uphill on a trail vs. on a treadmill significantly elevates both O2Cr and magnitude/variability of feet medio-lateral accelerations but no difference could be identified between trails of different a priori technicities.


Asunto(s)
Consumo de Oxígeno , Carrera , Masculino , Humanos , Consumo de Oxígeno/fisiología , Carrera/fisiología , Prueba de Esfuerzo/métodos , Frecuencia Cardíaca/fisiología , Oxígeno
8.
Med Sci Sports Exerc ; 54(5): 872-882, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35072662

RESUMEN

INTRODUCTION: Running and cycling represent two of the most common forms of endurance exercise. However, a direct comparison of the neuromuscular consequences of these two modalities after prolonged exercise has never been made. The aim of this study was to compare the alterations in neuromuscular function induced by matched-intensity and duration cycling and running exercise. METHODS: During separate visits, 17 endurance-trained male participants performed 3 h of cycling and running at 105% of the gas exchange threshold. Neuromuscular assessments were taken are preexercise, midexercise, and postexercise, including knee extensor maximal voluntary contractions (MVC), voluntary activation (VA), high- and low-frequency doublets (Db100 and Db10, respectively), potentiated twitches (Qtw,pot), motor evoked potentials (MEP), and thoracic motor evoked potentials (TMEP). RESULTS: After exercise, MVC was similarly reduced by ~25% after both running and cycling. However, reductions in VA were greater after running (-16% ± 10%) than cycling (-10% ± 5%; P < 0.05). Similarly, reductions in TMEP were greater after running (-78% ± 24%) than cycling (-15% ± 60%; P = 0.01). In contrast, reductions in Db100 (running vs cycling, -6% ± 21% vs -13% ± 6%) and Db10:100 (running vs cycling, -6% ± 16% vs -19% ± 13%) were greater for cycling than running (P ≤ 0.04). CONCLUSIONS: Despite similar decrements in the knee extensor MVC after running and cycling, the mechanisms responsible for force loss differed. Running-based endurance exercise is associated with greater impairments in nervous system function, particularly at the spinal level, whereas cycling-based exercise elicits greater impairments in contractile function. Differences in the mechanical and metabolic demands imposed on the quadriceps could explain the disparate mechanisms of neuromuscular impairment after these two exercise modalities.


Asunto(s)
Ciclismo , Fatiga Muscular , Ciclismo/fisiología , Electromiografía , Humanos , Masculino , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología
9.
Med Sci Sports Exerc ; 53(11): 2374-2387, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34107510

RESUMEN

INTRODUCTION: Women have been shown to experience less neuromuscular fatigue than men in knee extensors (KE) and less peripheral fatigue in plantar flexors (PF) after ultratrail running, but it is unknown if these differences exist for shorter trail running races and whether this may impact running economy. The purpose of this study was to characterize sex differences in fatigability over a range of running distances and to examine possible differences in the postrace alteration of the cost of running (Cr). METHODS: Eighteen pairs of men and women were matched by performance after completing different races ranging from 40 to 171 km, divided into SHORT versus LONG races (<60 and >100 km, respectively). Neuromuscular function and Cr were tested before and after each race. Neuromuscular function was evaluated on both KE and PF with voluntary and evoked contractions using electrical nerve (KE and PF) and transcranial magnetic (KE) stimulation. Oxygen uptake, respiratory exchange ratio, and ventilation were measured on a treadmill and used to calculate Cr. RESULTS: Compared with men, women displayed a smaller decrease in maximal strength in KE (-36% vs -27%, respectively, P < 0.01), independent of race distance. In SHORT only, women displayed less peripheral fatigue in PF compared with men (Δ peak twitch: -10% vs -24%, respectively, P < 0.05). Cr increased similarly in men and women. CONCLUSIONS: Women experience less neuromuscular fatigue than men after both "classic" and "extreme" prolonged running exercises but this does not impact the degradation of the energy Cr.


Asunto(s)
Conducta Competitiva/fisiología , Carrera de Maratón/fisiología , Fatiga Muscular/fisiología , Resistencia Física/fisiología , Caracteres Sexuales , Proteína C-Reactiva/metabolismo , Creatina Quinasa/sangre , Estimulación Eléctrica , Electromiografía , Metabolismo Energético , Potenciales Evocados Motores , Femenino , Pie/fisiología , Humanos , Rodilla/fisiología , Masculino , Consumo de Oxígeno , Intercambio Gaseoso Pulmonar , Torque , Estimulación Magnética Transcraneal
10.
Free Radic Biol Med ; 75 Suppl 1: S43-4, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26461377

RESUMEN

Muscle atrophy is linked to reactive oxygen species (ROS) production during hindlimb-unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of our study was to determine the mechanism by which ROS cause muscle atrophy and its possible prevention by allopurinol, a well-known inhibitor of XO widely used in clinical practice, and indomethacin, a nonsteroidal anti-inflammatory drug. We studied the activation of p38 MAP Kinase and NF-?B pathways, and the expression of two E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFb) and Muscle RING Finger-1 (MuRF-1). Male Wistar rats (3 mold) conditioned by 14 days of hindlimb unloading (n=18), with or without the treatment, were compared with freely ambulating controls (n=18). After the experimental intervention, soleus muscles were removed, weighted and analyzed to determine oxidative stress and inflammatory parameters. We found that hindlimb unloading induced a significant increase in XO activity in plasma (39%, p=0.001) and in the protein expression of CuZnSOD and Catalase in skeletal muscle. Inhibitionof XO partially prevented protein carbonylation, both in plasma and in soleus muscle, in the unloaded animals. The most relevant new fact reported is that allopurinol prevents soleus muscle atrophy by ~20% after hindlimb unloading. Combining allopurinol and indomethacin we found a further prevention in the atrophy process. This is mediated by the inhibition of the p38 MAPK-MAFbx and NF-?B -MuRF-1 pathways. Our data point out the potential benefit of allopurinol and indomethacin administration for bedridden, astronauts, sarcopenic and cachexic patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA