Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 24, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216593

RESUMEN

Modeling human neuronal properties in physiological and pathological conditions is essential to identify novel potential drugs and to explore pathological mechanisms of neurological diseases. For this purpose, we generated a three-dimensional (3D) neuronal culture, by employing the readily available human neuroblastoma SH-SY5Y cell line, and a new differentiation protocol. The entire differentiation process occurred in a matrix and lasted 47 days, with 7 days of pre-differentiation phase and 40 days of differentiation, and allowed the development of a 3D culture in conditions consistent with the physiological environment. Neurons in the culture were electrically active, were able to establish functional networks, and showed features of cholinergic neurons. Hence here we provide an easily accessible, reproducible, and suitable culture method that might empower studies on synaptic function, vesicle trafficking, and metabolism, which sustain neuronal activity and cerebral circuits. Moreover, this novel differentiation protocol could represent a promising cellular tool to study physiological cellular processes, such as migration, differentiation, maturation, and to develop novel therapeutic approaches.

2.
Acta Physiol (Oxf) ; 240(3): e14082, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38214033

RESUMEN

AIMS: The heterozygous phospholamban (PLN) mutation R14del (PLN R14del+/- ) is associated with a severe arrhythmogenic cardiomyopathy (ACM) developing in the adult. "Superinhibition" of SERCA2a by PLN R14del is widely assumed to underlie the pathogenesis, but alternative mechanisms such abnormal energy metabolism have also been reported. This work aims to (1) to evaluate Ca2+ dynamics and energy metabolism in a transgenic (TG) mouse model of the mutation prior to cardiomyopathy development; (2) to test whether they are causally connected. METHODS: Ca2+ dynamics, energy metabolism parameters, reporters of mitochondrial integrity, energy, and redox homeostasis were measured in ventricular myocytes of 8-12 weeks-old, phenotypically silent, TG mice. Mutation effects were compared to pharmacological PLN antagonism and analyzed during modulation of sarcoplasmic reticulum (SR) and cytosolic Ca2+ compartments. Transcripts and proteins of relevant signaling pathways were evaluated. RESULTS: The mutation was characterized by hyperdynamic Ca2+ handling, compatible with a loss of SERCA2a inhibition by PLN. All components of energy metabolism were depressed; myocyte energy charge was preserved under quiescence but reduced during stimulation. Cytosolic Ca2+ buffering or SERCA2a blockade reduced O2 consumption with larger effect in the mutant. Signaling changes suggest cellular adaptation to perturbed Ca2+ dynamics and response to stress. CONCLUSIONS: (1) PLN R14del+/- loses its ability to inhibit SERCA2a, which argues against SERCA2a superinhibition as a pathogenetic mechanism; (2) depressed energy metabolism, its enhanced dependency on Ca2+ and activation of signaling responses point to an early involvement of metabolic stress in the pathogenesis of this ACM model.


Asunto(s)
Cardiomiopatías , Animales , Ratones , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/genética , Ratones Transgénicos , Mutación , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
3.
Cell Metab ; 36(6): 1302-1319.e12, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838642

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic ß cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Trasplante de Islotes Pancreáticos , Ratones Endogámicos C57BL , Animales , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Masculino , Trasplante de Corazón , Ratones Endogámicos BALB C , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Supervivencia de Injerto/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA