Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 626(8000): 725-726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38321158
2.
J Anim Ecol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979934

RESUMEN

Understanding patterns of species diversity is crucial for ecological research and conservation, and this understanding may be improved by studying patterns in the two components of species diversity, species richness and evenness of abundance of species. Variation in species richness and evenness has previously been linked to variation in total abundance of communities as well as productivity gradients. Exploring both components of species diversity is essential because these components could be unrelated or driven by different mechanisms. The aim of this study was to investigate the relationship between species richness and evenness in European bird communities along an extensive latitudinal gradient. We examined their relationships with latitude and Net Primary Productivity, which determines energy and matter availability for heterotrophs, as well as their responses to territory densities (i.e. the number of territories per area) and community biomass (i.e. the bird biomass per area). We applied a multivariate Poisson log-normal distribution to unique long-term, high-quality time-series data, allowing us to estimate species richness of the community as well as the variance of this distribution, which acts as an inverse measure of evenness. Evenness in the distribution of abundance of species in the community was independent of species richness. Species richness increased with increasing community biomass, as well as with increasing density. Since both measures of abundance were explained by NPP, species richness was partially explained by energy-diversity theory (i.e. the more energy, the more species sustained by the ecosystem). However, species richness did not increase linearly with NPP but rather showed a unimodal relationship. Evenness was not explained either by productivity nor by any of the aspects of community abundance. This study highlights the importance of considering both richness and evenness to gain a better understanding of variation in species diversity. We encourage the study of both components of species diversity in future studies, as well as use of simulation studies to verify observed patterns between richness and evenness.

3.
Evol Appl ; 17(4): e13684, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617828

RESUMEN

Harvesting and culling are methods used to monitor and manage wildlife diseases. An important consequence of these practices is a change in the genetic dynamics of affected populations that may threaten their long-term viability. The effective population size (N e) is a fundamental parameter for describing such changes as it determines the amount of genetic drift in a population. Here, we estimate N e of a harvested wild reindeer population in Norway. Then we use simulations to investigate the genetic consequences of management efforts for handling a recent spread of chronic wasting disease, including increased adult male harvest and population decimation. The N e/N ratio in this population was found to be 0.124 at the end of the study period, compared to 0.239 in the preceding 14 years period. The difference was caused by increased harvest rates with a high proportion of adult males (older than 2.5 years) being shot (15.2% in 2005-2018 and 44.8% in 2021). Increased harvest rates decreased N e in the simulations, but less sex biased harvest strategies had a lower negative impact. For harvest strategies that yield stable population dynamics, shifting the harvest from calves to adult males and females increased N e. Population decimation always resulted in decreased genetic variation in the population, with higher loss of heterozygosity and rare alleles with more severe decimation or longer periods of low population size. A very high proportion of males in the harvest had the most severe consequences for the loss of genetic variation. This study clearly shows how the effects of harvest strategies and changes in population size interact to determine the genetic drift of a managed population. The long-term genetic viability of wildlife populations subject to a disease will also depend on population impacts of the disease and how these interact with management actions.

4.
Ecol Evol ; 14(5): e11356, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694748

RESUMEN

The house sparrow (Passer domesticus) is a small passerine known to be highly sedentary. Throughout a 30-year capture-mark-recapture study, we have obtained occasional reports of recoveries far outside our main metapopulation study system, documenting unusually long dispersal distances. Our records constitute the highest occurrence of long-distance dispersal events recorded for this species in Scandinavia. Such long-distance dispersals radically change the predicted distribution of dispersal distances and connectedness for our study metapopulation. Moreover, it reveals a much greater potential for colonization than formerly recorded for the house sparrow, which is an invasive species across four continents. These rare and occasional long-distance dispersal events are challenging to document but may have important implications for the genetic composition of small and isolated populations and for our understanding of dispersal ecology and evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA