Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO J ; 39(19): e104319, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32915464

RESUMEN

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.


Asunto(s)
Colon/metabolismo , Proteína Forkhead Box M1/metabolismo , Receptores de Hidrocarburo de Aril/deficiencia , Transducción de Señal , Células Madre/metabolismo , Animales , Femenino , Proteína Forkhead Box M1/genética , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Ratones Transgénicos , Receptores de Hidrocarburo de Aril/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38563893

RESUMEN

After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the Aryl Hydrocarbon Receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon. Here, we investigated the effect of the conditional loss of AhR activity in IECs in the formation and immune cell composition of TLTs in a model of acute inflammation. In females, loss of AhR activity in IECs reduced the formation of TLTs without significantly changing disease outcomes nor immune cell composition within TLTs. In males lacking AhR expression in IECs, increased disease activity index, lower expression of functional-IEC genes, increased number of TLTs, increased T-cell density, and lower B- to T-cell ratio was observed. These findings may represent an unfavorable prognosis when exposed to DSS-induced epithelial damage compared to females. Sex and loss of IEC AhR also resulted in changes in microbial populations in the gut. Collectively, these data suggest that the formation of TLTs in the colon is influenced by sex and AhR expression in IECs.

3.
Regul Toxicol Pharmacol ; 146: 105525, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972849

RESUMEN

In October 2022, the World Health Organization (WHO) convened an expert panel in Lisbon, Portugal in which the 2005 WHO TEFs for chlorinated dioxin-like compounds were reevaluated. In contrast to earlier panels that employed expert judgement and consensus-based assignment of TEF values, the present effort employed an update to the 2006 REP database, a consensus-based weighting scheme, a Bayesian dose response modeling and meta-analysis to derive "Best-Estimate" TEFs. The updated database contains almost double the number of datasets from the earlier version and includes metadata that informs the weighting scheme. The Bayesian analysis of this dataset results in an unbiased quantitative assessment of the congener-specific potencies with uncertainty estimates. The "Best-Estimate" TEF derived from the model was used to assign 2022 WHO-TEFs for almost all congeners and these values were not rounded to half-logs as was done previously. The exception was for the mono-ortho PCBs, for which the panel agreed to retain their 2005 WHO-TEFs due to limited and heterogenous data available for these compounds. Applying these new TEFs to a limited set of dioxin-like chemical concentrations measured in human milk and seafood indicates that the total toxic equivalents will tend to be lower than when using the 2005 TEFs.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animales , Humanos , Teorema de Bayes , Dibenzofuranos/toxicidad , Dibenzofuranos Policlorados/toxicidad , Dioxinas/toxicidad , Mamíferos , Bifenilos Policlorados/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Organización Mundial de la Salud
4.
Cancer Immunol Immunother ; 72(12): 3985-3999, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847301

RESUMEN

There is evidence that the orphan nuclear receptor 4A1 (NR4A1, Nur77) is overexpressed in exhausted CD8 + T cells and regulates PD-L1 in tumors. This study investigated the effects of potent bis-indole-derived NR4A1 antagonists on reversing T-cell exhaustion and downregulating PD-L1 in colon tumors/cells. NR4A1 antagonists inhibited colon tumor growth and downregulated expression of PD-L1 in mouse colon MC-38-derived tumors and cells. TILs from MC-38 cell-derived colon tumors and splenic lymphocytes exhibited high levels of the T-cell exhaustion markers including PD-1, 2B4, TIM3+ and TIGIT and similar results were observed in the spleen, and these were inhibited by NR4A1 antagonists. In addition, treatment with NR4A1 antagonists induced cytokine activation markers interferon γ, granzyme B and perforin mRNAs and decreased TOX, TOX2 and NFAT in TIL-derived CD8 + T cells. Thus, NR4A1 antagonists decrease NR4A1-dependent pro-oncogenic activity and PD-L1 expression in colon tumors and inhibit NR4A1-dependent T-cell exhaustion in TILs and spleen and represent a novel class of mechanism-based drugs that enhance immune surveillance in tumors.


Asunto(s)
Antígeno B7-H1 , Neoplasias del Colon , Animales , Ratones , Agotamiento de Células T , Bazo , Neoplasias del Colon/tratamiento farmacológico , Linfocitos T CD8-positivos , Indoles/farmacología
5.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982239

RESUMEN

The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.


Asunto(s)
Antineoplásicos , MicroARNs , Rabdomiosarcoma , Humanos , Factores de Transcripción Sp/metabolismo , Antineoplásicos/farmacología , MicroARNs/genética , Rabdomiosarcoma/genética , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp3/metabolismo , Regulación Neoplásica de la Expresión Génica
6.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769029

RESUMEN

Coffee is one of the most widely consumed beverages worldwide, and epidemiology studies associate higher coffee consumption with decreased rates of mortality and decreased rates of neurological and metabolic diseases, including Parkinson's disease and type 2 diabetes. In addition, there is also evidence that higher coffee consumption is associated with lower rates of colon and rectal cancer, as well as breast, endometrial, and other cancers, although for some of these cancers, the results are conflicting. These studies reflect the chemopreventive effects of coffee; there is also evidence that coffee consumption may be therapeutic for some forms of breast and colon cancer, and this needs to be further investigated. The mechanisms associated with the chemopreventive or chemotherapeutic effects of over 1000 individual compounds in roasted coffee are complex and may vary with different diseases. Some of these mechanisms may be related to nuclear factor erythroid 2 (Nrf2)-regulated pathways that target oxidative stress or pathways that induce reactive oxygen species to kill diseased cells (primarily therapeutic). There is evidence for the involvement of receptors which include the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A1 (NR4A1), as well as contributions from epigenetic pathways and the gut microbiome. Further elucidation of the mechanisms will facilitate the potential future clinical applications of coffee extracts for treating cancer and other inflammatory diseases.


Asunto(s)
Anticarcinógenos , Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Diabetes Mellitus Tipo 2/prevención & control , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Estrés Oxidativo , Especies Reactivas de Oxígeno , Café
7.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175855

RESUMEN

It was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their KD values ranged from 0.36 µM for 3,5,7-trihydroxyflavone (galangin) to 45.8 µM for 3'-hydroxyflavone. KD values determined using ITC and KD values for most (15/20) of the hydroxyflavones were decreased compared to those obtained using the fluorescence assay. The results of binding, transactivation and receptor-ligand modeling assays showed that KD values, transactivation data and docking scores for these compounds are highly variable with respect to the number and position of the hydroxyl groups on the flavone backbone structure, suggesting that hydroxyflavones are selective NR4A1 modulators. Nevertheless, the data show that hydroxyflavone-based neutraceuticals are NR4A1 ligands and that some of these compounds can now be repurposed and used to target sub-populations of patients that overexpress NR4A1.


Asunto(s)
Flavonas , Receptores Nucleares Huérfanos , Humanos , Flavonas/farmacología , Ligandos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Receptores Nucleares Huérfanos/metabolismo , Unión Proteica
8.
Mol Pharmacol ; 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680166

RESUMEN

Resveratrol is a polyphenolic phytochemical found in fruits, nuts and vegetables that contributes to the remarkable dietary effects of polyphenolic as inhibitors aging and multiple aging related diseases. In addition, resveratrol has been extensively investigated as an inhibitor of inflammatory diseases including cancer, however, the underlying mechanisms of these chemotherapeutic effects of resveratrol are not completely understood. In cancer cells resveratrol inhibits cell growth, survival, migration and invasion, and many of the effects of resveratrol resemble those observed for bis-indole derived (CDIM) compounds that bind the pro-oncogenic nuclear receptor 4A1 (NR4A1, Nur77) and act as receptor antagonists. Using an isothermal titration calorimetry binding assay, we observed that resveratrol bound to the ligand binding domain of NR4A1 with a KD value of 2.4 µM and a ΔG of -32.2 kJ/mol. Resveratrol also inhibited NR4A1-dependent transactivation in H460 and H1299 lung cancer cells suggesting that resveratrol is an NR4A1 antagonist. This observation was confirmed in a series of functional (cell proliferation, survival, migration and invasion) and gene expression assays in H460 and H1299 cells showing that treatment with resveratrol mimicked the effects of NR4A1 knockdown and were similar to results of previous studies using CDIM/NR4A1 antagonists. These data indicate that applications of resveratrol may be more effective in patients that overexpress NR4A1 which is a negative prognostic factor for patients with some solid tumor-derived cancers. Significance Statement We have examined the mechanism of action of resveratrol and show binding to NR4A1 (KD = 2.4 µM) and inhibition of NR4A1-dependent transactivation in lung cancer cells. Treatment of H460 and H1299 lung cancer cells with resveratrol inhibits cell growth, survival, migration/invasion and related genes, and acts as an NR4A1 antagonist. Resveratrol can now be used more effectively in cancer chemotherapy by targeting patients that overexpress NR4A1 in lung cancer.

9.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G93-G106, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34755534

RESUMEN

IL22 signaling plays an important role in maintaining gastrointestinal epithelial barrier function, cell proliferation, and protection of intestinal stem cells from genotoxicants. Emerging studies indicate that the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, promotes production of IL22 in gut immune cells. However, it remains to be determined if AhR signaling can also affect the responsiveness of colonic epithelial cells to IL22. Here, we show that IL22 treatment induces the phosphorylation of STAT3, inhibits colonic organoid growth, and promotes colonic cell proliferation in vivo. Notably, intestinal cell-specific AhR knockout (KO) reduces responsiveness to IL22 and compromises DNA damage response after exposure to carcinogen, in part due to the enhancement of suppressor of cytokine signaling 3 (SOCS3) expression. Deletion of SOCS3 increases levels of pSTAT3 in AhR KO organoids, and phenocopies the effects of IL22 treatment on wild-type (WT) organoid growth. In addition, pSTAT3 levels are inversely associated with increased azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumorigenesis in AhR KO mice. These findings indicate that AhR function is required for optimal IL22 signaling in colonic epithelial cells and provide rationale for targeting AhR as a means of reducing colon cancer risk.NEW & NOTEWORTHY AhR is a key transcription factor controlling expression of IL22 in gut immune cells. In this study, we show for the first time that AhR signaling also regulates IL22 response in colonic epithelial cells by modulating SOCS3 expression.


Asunto(s)
Colon/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Interleucinas/farmacología , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Factor de Transcripción STAT3/efectos de los fármacos , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Colon/metabolismo , Neoplasias del Colon/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ratones Noqueados , Organoides/metabolismo , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/fisiología , Proteína 3 Supresora de la Señalización de Citocinas/efectos de los fármacos , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Activación Transcripcional/fisiología , Interleucina-22
10.
Mol Carcinog ; 61(1): 73-84, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699643

RESUMEN

Paraspeckles compound 1 (PSPC1) is a multifunctional protein that plays an important role in cancer cells, where PSPC1 is a master regulator of pro-oncogenic responses that includes activation of TGFß (TGFß1), TGFß-dependent EMT, and metastasis. The pro-oncogenic activities of PSPC1 closely resembled those observed for the orphan nuclear receptor 4A1 (NR4A1, Nur77) and knockdown of NR4A1 decreased expression of PSPC1 in MDA-MB-231 breast, H1299 lung, and SNU449 liver cancer cells. Similar results were observed in these same cell lines after treatment with bisindole-derived (CDIMs) NR4A1 antagonists. Moreover, PSPC1-dependent regulation of TGFß, genes associated with cancer stem cells and epithelial to mesenchymal transition (EMT) were also downregulated after NR4A1 silencing or treatment of breast, lung, and liver cancer cells with CDIM/NR4A1 antagonists. Results of chromatin immunoprecipitation (ChIP) assays suggest that NR4A1 regulates PSPC1 through interaction with an NBRE sequence in the PSPC1 gene promoter. These results coupled with in vivo studies showing that NR4A1 antagonists inhibit breast tumor growth and downregulate PSPC1 in tumors indicate that the pro-oncogenic nuclear PSPC1 factor can be targeted by CDIM/NR4A1 antagonists.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Metano/administración & dosificación , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Células A549 , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Células HCT116 , Células Hep G2 , Humanos , Metano/farmacología , Ratones , Trasplante de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Células PC-3 , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Annu Rev Nutr ; 41: 455-478, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34633858

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Dieta , Homeostasis , Humanos , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo
12.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563670

RESUMEN

The orphan nuclear receptor 4A1 (NR4A1) is highly expressed in human pancreatic cancer cells and exerts pro-oncogenic activity. In a previous study, we demonstrated that fangchinoline (FCN), a natural inhibitor of nuclear NR4A1, induces NR4A1-dependent apoptosis in human pancreatic cancer cells. In this study, we evaluated FCN and its structural analogs (berbamine, isotetrandrine, tetrandrine, and tubocurarine) for their inhibitory effects on NR4A1 transactivity, and confirmed that tetrandrine (TTD) showed the highest inhibitory effect in pancreatic cancer cells. Moreover, in a tryptophan fluorescence quenching assay, TTD directly bound to the ligand binding domain (LBD) of NR4A1 with a KD value of 10.60 µM. Treatment with TTD decreased proliferation and induced apoptosis in Panc-1 human pancreatic cancer cells in part through the reduced expression of the Sp1-dependent anti-apoptotic gene survivin and induction of ROS-mediated endoplasmic reticulum stress, which are the well-known NR4A1-dependent proapoptotic pathways. Furthermore, at a dose of 25 mg/kg/day, TTD reduced tumor growth in an athymic nude mouse xenograft model bearing Panc-1 cells. These data show that TTD is an NR4A1 antagonist and that modulation of the NR4A1-mediated pro-survival pathways is involved in the antitumor effects of TTD.


Asunto(s)
Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Neoplasias Pancreáticas , Animales , Apoptosis , Bencilisoquinolinas , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
13.
Am J Pathol ; 190(4): 900-915, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32035061

RESUMEN

Tumor metastasis to the draining lymph nodes is critical in patient prognosis and is tightly regulated by molecular interactions mediated by lymphatic endothelial cells (LECs). The underlying mechanisms remain undefined in the head and neck squamous cell carcinomas (HNSCCs). Using HNSCC cells and LECs we determined the mechanisms mediating tumor-lymphatic cross talk. The effects of a pentacyclic triterpenoid, methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me), a potent anticancer agent, were studied on cancer-lymphatic interactions. In response to inflammation, LECs induced the chemokine (C-X-C motif) ligand 9/10/11 chemokines with a concomitant increase in the chemokine (C-X-C motif) receptor 3 (CXCR3) in tumor cells. CF3DODA-Me showed antiproliferative effects on tumor cells, altered cellular bioenergetics, suppressed matrix metalloproteinases and chemokine receptors, and the induction of CXCL11-CXCR3 axis and phosphatidylinositol 3-kinase/AKT pathways. Tumor cell migration to LECs was inhibited by blocking CXCL11 whereas recombinant CXCL11 significantly induced tumor migration, epithelial-to-mesenchymal transition, and matrix remodeling. Immunohistochemical analysis of HNSCC tumor arrays showed enhanced expression of CXCR3 and increased lymphatic vessel infiltration. Furthermore, The Cancer Genome Atlas RNA-sequencing data from HNSCC patients also showed a positive correlation between CXCR3 expression and lymphovascular invasion. Collectively, our data suggest a novel mechanism for cross talk between the LECs and HNSCC tumors through the CXCR3-CXCL11 axis and elucidate the role of the triterpenoid CF3DODA-Me in abrogating several of these tumor-promoting pathways.


Asunto(s)
Quimiocina CXCL11/metabolismo , Células Endoteliales/patología , Neoplasias de Cabeza y Cuello/patología , Inflamación/patología , Receptores CXCR3/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/secundario , Antineoplásicos/farmacología , Quimiocina CXCL11/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/metabolismo , Metástasis Linfática , Pronóstico , Receptores CXCR3/genética , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Triterpenos/farmacología , Células Tumorales Cultivadas
14.
Biochem J ; 477(19): 3899-3910, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32905582

RESUMEN

Tryptophan metabolites exhibit aryl hydrocarbon receptor (AhR) agonist activity and recent studies show that the phenylalanine metabolites serotonin and carbidopa, a drug used in treating Parkinson's disease, activated the AhR. In this study, we identified the neuroactive hormone dopamine as an inducer of drug-metabolizing enzymes CYP1A1, CYP1B1, and UGT1A1 in colon and glioblastoma cells and similar results were observed for carbidopa. In contrast, carbidopa but not dopamine exhibited AhR activity in BxPC3 pancreatic cancer cells whereas minimal activity was observed for both compounds in Panc1 pancreatic cancer cells. In contrast with a previous report, the induction responses and cytotoxicity of carbidopa was observed only at high concentrations (100 µM) in BxPC3 cells. Our results show that similar to serotonin and several tryptophan metabolites, dopamine is also an AhR-active compound.


Asunto(s)
Carbidopa/farmacología , Inductores de las Enzimas del Citocromo P-450/farmacología , Dopamina/farmacología , Neoplasias/metabolismo , Receptores de Hidrocarburo de Aril , Células CACO-2 , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Glucuronosiltransferasa , Humanos , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/metabolismo
15.
Molecules ; 26(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923503

RESUMEN

The orphan nuclear receptor 4A1 (NR4A1) is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity, and NR4A1 silencing and treatment with its inactivators has been shown to inhibit pancreatic cancer cells and tumor growth. In this study, we identified broussochalcone A (BCA) as a new NR4A1 inhibitor and demonstrated that BCA inhibits cell growth partly by inducing NR4A1-mediated apoptotic pathways in human pancreatic cancer cells. BCA downregulated specificity protein 1 (Sp1)-mediated expression of an anti-apoptotic protein, survivin, and activated the endoplasmic reticulum (ER) stress-mediated apoptotic pathway. These results suggest that NR4A1 inactivation contributes to the anticancer effects of BCA, and that BCA represents a potential anticancer agent targeting NR4A1 that is overexpressed in many types of human cancers.


Asunto(s)
Chalconas/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Neoplasias Pancreáticas/metabolismo , Resorcinoles/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pancreáticas
16.
J Biol Chem ; 294(29): 11342-11353, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31171720

RESUMEN

The aryl hydrocarbon receptor (AhR) plays an important role in maintaining cellular homeostasis and also in pathophysiology. For example, the interplay between the gut microbiome and microbially derived AhR ligands protects against inflammation along the gut-brain axis. The AhR and its ligands also inhibit colon carcinogenesis, but it has been reported that the AhR and its ligand kynurenine enhance glioblastoma (GBM). In this study, using both established and patient-derived GBM cells, we re-examined the role of kynurenine and the AhR in GBM, observing that kynurenine does not modulate AhR-mediated gene expression and does not affect invasion of GBM cells. Therefore, using an array of approaches, including ChIP, quantitative real-time PCR, and cell migration assays, we primarily focused on investigating the role of the AhR in GBM at the functional molecular and genomic levels. The results of transient and stable CRISPR/Cas9-mediated AhR knockdown in GBM cells indicated that loss of AhR enhances GBM tumor growth in a mouse xenograft model, increases GBM cell invasion, and up-regulates expression of pro-invasion/pro-migration genes, as determined by ingenuity pathway analysis of RNA-Seq data. We conclude that the AhR is a tumor suppressor-like gene in GBM; future studies are required to investigate whether the AhR could be a potential drug target for treating patients with GBM who express this receptor.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Encefálicas/genética , Genes Supresores de Tumor , Glioblastoma/genética , Receptores de Hidrocarburo de Aril/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/patología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Glioblastoma/patología , Xenoinjertos , Humanos , Quinurenina/metabolismo , Ratones , Ratones Desnudos , Unión Proteica , Receptores de Hidrocarburo de Aril/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G451-G463, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905023

RESUMEN

Consumption of a high-fat diet has been associated with an increased risk of developing colorectal cancer (CRC). However, the effects of the interaction between dietary fat content and the aryl hydrocarbon receptor (AhR) on colorectal carcinogenesis remain unclear. Mainly known for its role in xenobiotic metabolism, AhR has been identified as an important regulator for maintaining intestinal epithelial homeostasis. Although previous research using whole body AhR knockout mice has revealed an increased incidence of colon and cecal tumors, the unique role of AhR activity in intestinal epithelial cells (IECs) and modifying effects of fat content in the diet at different stages of sporadic CRC development are yet to be elucidated. In the present study, we have examined the effects of a high-fat diet on IEC-specific AhR knockout mice in a model of sporadic CRC. Although loss of AhR activity in IECs significantly induced the development of premalignant lesions, in a separate experiment, no significant changes in colon mass incidence were observed. Moreover, consumption of a high-fat diet promoted cell proliferation in crypts at the premalignant colon cancer lesion stage and colon mass multiplicity as well as ß-catenin expression and nuclear localization in actively proliferating cells in colon masses. Our data demonstrate the modifying effects of high-fat diet and AhR deletion in IECs on tumor initiation and progression.NEW & NOTEWORTHY Through the use of an intestinal-specific aryl hydrocarbon receptor (AhR) knockout mouse model, this study demonstrates that the expression of AhR in intestinal epithelial cells is required to reduce the formation of premalignant colon cancer lesions. Furthermore, consumption of a high-fat diet and the loss of AhR in intestinal epithelial cells influences the development of colorectal cancer at various stages.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Transformación Celular Neoplásica/metabolismo , Colon/metabolismo , Neoplasias del Colon/metabolismo , Dieta Alta en Grasa , Células Epiteliales/metabolismo , Eliminación de Gen , Mucosa Intestinal/metabolismo , Lesiones Precancerosas/metabolismo , Receptores de Hidrocarburo de Aril/deficiencia , Animales , Azoximetano , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Colon/patología , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Daño del ADN , Modelos Animales de Enfermedad , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Lesiones Precancerosas/inducido químicamente , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , beta Catenina/genética , beta Catenina/metabolismo
18.
Crit Rev Toxicol ; 50(6): 463-473, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32597352

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and structurally related halogenated aromatics modulate gene expression and induce biochemical and toxic responses that are mediated by initial binding to the aryl hydrocarbon receptor (AhR). The AhR also binds structurally diverse compound including pharmaceuticals, endogenous biochemicals, health-promoting phytochemicals, and microbial metabolites. Many of these AhR ligands do not induce TCDD-like toxic responses and some AhR ligands such as microbial metabolites of tryptophan play a role in maintaining gut health and protecting against intestinal inflammation and cancer. Many AhR ligands exhibit tissue- and response-specific AhR agonist or antagonist activities, and act as selective AhR modulators (SAhRMs) and this SAhRM-like activity has also been observed in AhR-ligand-mediated effects in the intestine. This review summarizes studies showing that several AhR ligands including phytochemicals and TCDD protect against dextran sodium sulfate-induced intestinal inflammation. In contrast, AhR ligands such as oxazole compounds enhance intestinal inflammation suggesting that AhR-mediated gut health can be enhanced or decreased by selective AhR modulators and this needs to be considered in development of AhR ligands for therapeutic applications in treating intestinal inflammation.


Asunto(s)
Microbioma Gastrointestinal , Receptores de Hidrocarburo de Aril , Humanos , Ligandos , Dibenzodioxinas Policloradas
19.
J Neurooncol ; 146(1): 25-39, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31754919

RESUMEN

INTRODUCTION: The orphan nuclear receptor 4A2 (NR4A2) has been extensively characterized in subcellular regions of the brain and is necessary for the function of dopaminergic neurons. The NR4A2 ligand, 1,1-bis (31-indoly1)-1-(p-chlorophenyl)methane (DIM-C-pPhCl) inhibits markers of neuroinflammation and degeneration in mouse models and in this study we investigated expression and function of NR4A2 in glioblastoma (GBM). METHODS: Established and patient-derived cell lines were used as models and the expression and functions of NR4A2 were determined by western blots and NR4A2 gene silencing by antisense oligonucleotides respectively. Effects of NR4A2 knockdown and DIM-C-pPhCl on cell growth, induction of apoptosis (Annexin V Staining) and migration/invasion (Boyden chamber and spheroid invasion assay) and transactivation of NR4A2-regulated reporter genes were determined. Tumor growth was investigated in athymic nude mice bearing U87-MG cells as xenografts. RESULTS: NR4A2 knockdown and DIM-C-pPhCl inhibited GBM cell and tumor growth, induced apoptosis and inhibited migration and invasion of GBM cells. DIM-C-pPhCl and related analogs also inhibited NR4A2-regulated transactivation (luciferase activity) confirming that DIM-C-pPhCl acts as an NR4A2 antagonist and blocks NR4A2-dependent pro-oncogenic responses in GBM. CONCLUSION: We demonstrate for the first time that NR4A2 is pro-oncogenic in GBM and thus a potential druggable target for patients with tumors expressing this receptor. Moreover, our bis-indole-derived NR4A2 antagonists represent a novel class of anti-cancer agents with potential future clinical applications for treating GBM.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Indoles/farmacología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Desnudos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Pronóstico , ARN Interferente Pequeño/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Microb Cell Fact ; 19(1): 219, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256731

RESUMEN

BACKGROUND: Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. RESULTS: Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. CONCLUSIONS: Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dieta , Heces/microbiología , Metaboloma , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Akkermansia/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias del Colon/microbiología , ADN Bacteriano , Femenino , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , ARN Ribosómico 16S , Receptores de Hidrocarburo de Aril/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA