Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; : e2400063, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461517

RESUMEN

Most mechanochromic luminescent compounds are crystalline and highly hydrophobic; however, mechanochromic luminescent molecular assemblies comprising amphiphilic molecules have rarely been explored. This study investigated mechanochromic luminescent supramolecular fibers composed of dumbbell-shaped 9,10-bis(phenylethynyl)anthracene-based amphiphiles without any tetraethylene glycol (TEG) substituents or with two TEG substituents. Both amphiphiles formed water-insoluble supramolecular fibers via linear hydrogen bond formation. Both compounds acquired water solubility when solid samples composed of supramolecular fibers are ground. Grinding induces the conversion of 1D supramolecular fibers into micellar assemblies where fluorophores can form excimers, thereby resulting in a large redshift in the fluorescence spectra. Excimer emission from the ground amphiphile without TEG chains is retained after dissolution in water. The micelles are stable in water because hydrophilic dendrons surround the hydrophobic luminophores. By contrast, when water is added to a ground amphiphile having TEG substituents, fragmented supramolecular fibers with the same molecular arrangement as the initial supramolecular fibers are observed, because fragmented fibers are thermodynamically preferable to micelles as the hydrophobic arrays of fluorophores are covered with hydrophilic TEG chains. This leads to the recovery of the initial fluorescent properties for the latter amphiphile. These supramolecular fibers can be used as practical mechanosensors to detect forces at the mesoscale.

2.
Angew Chem Int Ed Engl ; 61(42): e202209225, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-35950260

RESUMEN

Mechanochromic mechanophores are reporter molecules that indicate mechanical events through changes of their photophysical properties. Supramolecular mechanophores in which the activation is based on the rearrangement of luminophores and/or quenchers without any covalent bond scission, remain less well investigated. Here, we report a cyclophane-based supramolecular mechanophore that contains a 1,6-bis(phenylethynyl)pyrene luminophore and a pyromellitic diimide quencher. In solution, the blue monomer emission of the luminophore is largely quenched and a faint reddish-orange emission originating from a charge-transfer (CT) complex is observed. A polyurethane elastomer containing the mechanophore displays orange emission in the absence of force, which is dominated by the CT-emission. Mechanical deformation causes a decrease of the CT-emission and an increase of blue monomer emission, due to the spatial separation between the luminophore and quencher. The ratio of the two emission intensities correlates with the applied stress.

3.
J Am Chem Soc ; 143(26): 9884-9892, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34162206

RESUMEN

Mechanochromic mechanophores permit the design of polymers that indicate mechanical events through optical signals. Here we report rotaxane-based supramolecular mechanophores that display both reversible and irreversible fluorescence changes. These responses are triggered by different forces and are achieved by exploiting the molecular shuttling function and force-induced dethreading of rotaxanes. The new rotaxane mechanophores are composed of a ring featuring a luminophore, which is threaded onto an axle with a matching quencher and two stoppers. In the stress-free state, the luminophore is preferentially located in the proximity of the quencher, and the emission is quenched. The luminophore slides away from the quencher when a force is applied and the fluorescence is switched on. This effect is reversible, unless the force is so high that the luminophore-carrying ring slips past the stopper and dethreading occurs. We show that the combination of judiciously selected ring and stopper moieties is crucial to attain interlocked structures that display such a dual response. PU elastomers that contain such doubly responsive rotaxanes exhibit reversible fluorescence changes over multiple loading-unloading cycles due to the shuttling function, whereas permanent changes are observed upon repeated deformations to high strains due to breakage of the mechanical bond upon dethreading of the ring from the axle. This response allows one, at least conceptually, to monitor the actual deformation of polymer materials and examine mechanical damage that was inflicted in the past on the basis of an optical signal.

4.
J Am Chem Soc ; 143(14): 5519-5525, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33784073

RESUMEN

A new approach to cyclophane-based supramolecular mechanophores is presented. We report a mechanically responsive cyclic motif that contains two fluorescent 1,6-bis(phenylethynyl)pyrene moieties that are capable of forming intramolecular excimers. The emission spectra of dilute solutions of this cyclophane and a polyurethane elastomer into which a small amount of the mechanophore (0.08 wt %) had been covalently integrated are dominated by excimer emission. Films of the cyclophane-containing polyurethane also display a considerable portion of excimer emission, but upon deformation, the fluorescence becomes monomer-dominated and a perceptible change from cyan to blue is observed. The response is instant, reversible, and consistent with a mechanically induced change of the molecular conformation of the mechanophore so that the excimer-promoting interactions between the luminophores are suppressed. In-depth investigations show a correlation between the applied strain and the emission color, which can conveniently be expressed by the ratio of monomer to excimer emission intensity. The current study suggests that cyclophanes can be utilized to develop various supramolecular mechanophores that detect and visualize weak forces occurring in polymeric materials or generated by living tissues.


Asunto(s)
Éteres Cíclicos/química , Sustancias Luminiscentes/química , Fenómenos Mecánicos , Polímeros/química
5.
Angew Chem Int Ed Engl ; 60(29): 16191-16199, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33961723

RESUMEN

A supramolecular mechanophore that can be integrated into polymers and indicates deformation by a fluorescence color change is reported. Two perylene diimides (PDIs) were connected by a short spacer and equipped with peripheral atom transfer polymerization initiators. In the idle state, the motif folds into a loop and its emission is excimer dominated. Poly(methyl acrylate) (PMA) chains were grown from the motif and the mechanophore-containing polymer was blended with unmodified PMA to afford materials that display a visually discernible fluorescence color change upon deformation, which causes the loops to unfold. The response is instant, and correlates linearly with the applied strain. Experiments with a reference polymer containing only one PDI moiety show that looped mechanophores that display intramolecular excimer formation offer considerable advantages over intermolecular dye aggregates, including a concentration-independent response, direct signaling of mechanical processes, and a more pronounced optical change.

6.
Chemistry ; 25(24): 6162-6169, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30860632

RESUMEN

The mechanoresponsive behavior and photochemical response of a new bis(cyanostyryl)benzene fluorophore (CSB-5) were investigated. Green fluorescence with λem,max of 507 nm was found for CSB-5 in chloroform solution, mirroring the behavior of a previously reported similar dye (CSB-6). Alternatively, crystalline samples of CSB-5 exhibited orange fluorescence with λem,max of 620 nm, attributable to excimer emission. Although the emission color change was not clearly noticeable by naked eye, CSB-5 exhibited mechanochromic luminescence, due to transformation into the amorphous state upon grinding the crystalline powder. Interestingly, rubbed films of CSB-5 prepared on glass substrates exhibited a pronounced emission color change from orange to green when exposed to UV light. This response is the result of a photochemical reaction that occurs in the amorphous state and which causes a decrease of the excimer emission sites so that the emission color changes from excimer to monomer. The crystalline material did not display such a photoinduced emission color change and the difference in photochemical reactivity between crystalline and amorphous states was exploited to pattern the emission color of rubbed films.

7.
Macromol Rapid Commun ; 40(1): e1800705, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417478

RESUMEN

A well-known approach toward mechanochromic polymers relies on the incorporation of excimer-forming fluorophores into a matrix polymer and the disruption of aggregated chromophores when such materials undergo macroscopic mechanical deformation. However, the required aggregates and stress-transfer processes have so far only been realized with select dye/polymer combinations. As demonstrated here, the utility of this approach can be extended by tethering an excimer-forming cyano-substituted oligo(p-phenylene vinylene) fluorophore to the two ends of a telechelic poly(ethylene-co-butylene) and blending small amounts (0.1-2 wt%) of the resulting aggregachromic macromolecule into polymer matrices such as poly(ε-caprolactone), poly(isoprene), or poly(styrene-b-butadiene-b-styrene). All blends display mechanofluorochromic responses, and the ratio between the monomer and excimer emission intensities can be used to correlate the luminescence signal to the extent of deformation and to follow subsequent relaxation processes. The developed approach significantly expands the scope of blend-based mechanoresponsive luminescent materials.


Asunto(s)
Sustancias Luminiscentes/química , Polímeros/química , Sustancias Macromoleculares/química , Fenómenos Mecánicos , Estructura Molecular
8.
Chimia (Aarau) ; 73(1): 7-11, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813988

RESUMEN

While coupling mechanical and chemical processes is widespread in living organisms, the idea to harness the mechanically induced dissociation of weak covalent and non-covalent bonds to create artificial materials that respond to mechanical stimulation has only recently gained attention. Here we summarize our activities that mainly revolve around the exploitation of non-covalent interactions in (supramolecular) polymeric materials with the goal to translate mechanical stresses into useful, pre-defined events. Focusing on mechano- chromic polymers that alter their optical absorption or fluorescence properties, several new operating principles, mechanosensitive entities, and materials systems were developed. Such materials are expected to be useful for technical applications that range from the detection of very small forces in biological systems to the monitoring of degradation processes and damage in coatings and structural objects.

9.
J Am Chem Soc ; 140(5): 1584-1587, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29355316

RESUMEN

The integration of mechanophores, motifs that transduce mechanical forces into chemical reactions, allows creating materials with stress-dependent properties. Typical mechanophores are activated by cleaving weak covalent bonds, but these reactions can also be triggered by other stimuli, and this renders the behavior unspecific. Here we show that this problem can be overcome by extending the molecular-shuttle function of rotaxanes to mechanical activation. A mechanically interlocked mechanophore composed of a fluorophore-carrying macrocycle and a dumbbell-shaped molecule containing a matching quencher was integrated into a polyurethane elastomer. Deformation of this polymer causes a fluorescence turn-on, due to the spatial separation of fluorophore and quencher. This process is specific, efficient, instantly reversible, and elicits an easily detectable optical signal that correlates with the applied force.

10.
Phys Chem Chem Phys ; 20(43): 27385-27393, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30357180

RESUMEN

Molecular photoswitching, light induced reversible color/fluorescence modulation, has mostly been realized in organic molecules via E/Z isomerization of azobenzenes and stilbenes and ring opening/closing reactions of spiropyrans and diarylethenes. We report here new fluorescent molecular photoswitches based on triphenylamine (TPA)-imidazole derivatives, N-phenyl-N-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)benzenamine (NTPB) and N-phenyl-N-(4-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)benzenamine (NPPB), that exhibited light induced reversible fluorescence switching via conformational change from a twisted molecular structure to more planar. NTPB and NPPB in CHCl3 showed red shift of absorption and fluorescence upon UV light irradiation whereas white light exposure reversed both absorption as well as fluorescence. The role of the TPA-imidazole twisted molecular structure in photoswitching was established based on structure property, computational and photophysical studies. The isobestic point observed in time dependent fluorescence change under UV light irradiation clearly demonstrated the presence of two different conformational isomers. Interestingly, polymorphism and torsion angle (τ) dependent fluorescence of NTPB and NPPB in the solid state also supported the role of the twisted molecular structure of TPA-imidazole in fluorescence switching/tuning. Interestingly, NTPB showed fluorescence photoswitching in the solid state also whereas rigid phenanthrene based NPPB did not show fluorescence photoswitching. Thus the present studies provide structural insight for designing a new type of fluorescent organic molecular photoswitches based on conformational modulation that could be of potential interest in optoelectronic devices.

11.
Angew Chem Int Ed Engl ; 57(11): 2806-2810, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29363244

RESUMEN

Reversible emission color switching of triplet-triplet annihilation-based photon upconversion (TTA-UC) is achieved by employing an Os complex sensitizer with singlet-to-triplet (S-T) absorption and an asymmetric luminescent cyclophane with switchable emission characteristics. The cyclophane contains the 9,10-bis(phenylethynyl)anthracene unit as an emitter and can assemble into two different structures, a stable crystalline phase and a metastable supercooled nematic phase. The two structures exhibit green and yellow fluorescence, respectively, and can be accessed by distinct heating/cooling sequences. The hybridization of the cyclophane with the Os complex allows near-infrared-to-visible TTA-UC. The large anti-Stokes shift is possible by the direct S-T excitation, which dispenses with the use of a conventional sequence of singlet-singlet absorption and intersystem crossing. The TTA-UC emission color is successfully switched between green and yellow by thermal stimulation.

12.
J Am Chem Soc ; 139(12): 4302-4305, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28293946

RESUMEN

Mechanoresponsive luminescent (MRL) materials change their emission color upon application of external forces. Many dyes with MRL behavior are known, but they normally do not display useful mechanical properties. Here, we introduce a new approach to overcome this problem, which relies on combining MRL compounds with the concept of supramolecular polymerization. As a first embodiment, a cyano-substituted oligo(p-phenylenevinylene), whose MRL behavior is associated with different solid-state assemblies, was derivatized with two ureido-4-pyrimidinone groups, which support the formation of a dynamic supramolecular polymer. The new material displays the thermomechanical characteristics of a supramolecular polymer glass, offers three different emission colors in the solid state, and exhibits both MRL and thermoresponsive luminescent behavior.

13.
Chemistry ; 22(13): 4374-8, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26865078

RESUMEN

Multiresponsive materials that display predefined photoluminescence color changes upon exposure to different stimuli are attractive candidates for advanced sensing schemes. Herein, we report a cyano-substituted oligo(p-phenylene vinylene) (cyano-OPV) derivative that forms five different solvent-free solid-state molecular assemblies, luminescence properties of which change upon thermal and mechanical stimulation. Single-crystal X-ray structural analysis suggested that tolyl groups introduced at the termini of solubilizing side-chains of the cyano-OPV play a pivotal role in its solid-state arrangement. Viewed more broadly, this report shows that the introduction of competing intermolecular interactions into excimer-forming chromophores is a promising design strategy for multicolored thermo- and mechanoresponsive luminescent materials.


Asunto(s)
Nitrilos/química , Polivinilos/química , Cristalografía por Rayos X , Luminiscencia , Estructura Molecular , Propiedades de Superficie
14.
Top Curr Chem ; 369: 345-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26054388

RESUMEN

Mechanochemistry is a burgeoning field of materials science. Inspired by nature, many scientists have looked at different ways to introduce weak bonds into polymeric materials to impart them with function and in particular mechano-responsiveness. In the following sections, the incorporation of some of the weakest bonds, i.e. non-covalent bonds, into polymeric solids is being surveyed. This review covers sequentially π-π interactions, H-bonding and metal-ligand coordination bonds and tries to highlight some of the advantages and limitations of such systems, while providing some key perspective of what may come next in this tantalizing field.

15.
J Am Chem Soc ; 136(11): 4273-80, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24571353

RESUMEN

Covalent attachment of mechanoresponsive luminescent organic or organometallic compounds to other materials is a promising approach to develop a wide variety of mechanoresponsive luminescent materials. Here, we report covalently linkable mechanoresponsive micelles that change their photoluminescence from yellow to green in response to mechanical stimulation under aqueous conditions. These micelles are composed of a dumbbell-shaped amphiphilic pyrene derivative having amine groups at the peripheral positions of its dendrons. Using a well-established cross-linker, the micelles were covalently linked via their peripheral amine groups to the surface of glass beads, polylactic acid (PLA) beads, and living cells under aqueous conditions. Vortexing of glass beads bearing the micelles in a glass vial filled with water caused a photoluminescence color change from yellow to green. PLA beads bearing the micelles showed no change in photoluminescence color under the same conditions. We ascribe this result to the lower density and stiffness of the PLA beads, because the color of the PLA beads changed on vortexing in the presence of bare glass beads. HeLa cells and HL-60 cells bearing the micelles showed no obvious photoluminescence color change under vortexing. The structure, photophysical properties, and mechanism of photoluminescence color change of the micellar assemblies were examined.


Asunto(s)
Vidrio/química , Ácido Láctico/química , Luminiscencia , Polímeros/química , Pirenos/química , Tensoactivos/química , Células HL-60 , Humanos , Micelas , Tamaño de la Partícula , Poliésteres , Pirenos/síntesis química , Propiedades de Superficie , Tensoactivos/síntesis química , Agua/química
16.
Chemistry ; 20(33): 10397-403, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25043342

RESUMEN

Molecular assemblies that change photoluminescence color in response to thermal or mechanical stimulation without dissociation into the monomeric states in water are described herein. A dumbbell-shaped amphiphilic compound forms micellar molecular assemblies in water and exhibits yellow photoluminescence derived from excimer formation of the luminescent core, which contains a 2,6-diethynylanthracene moiety. Annealing of the aqueous solution induces a photoluminescence color change from yellow to green (λem, max =558→525 nm). The same photoluminescence color change is also achieved by rubbing the yellow-photoluminescence-emitting molecular assemblies adsorbed on glass substrates with cotton wool in water. The observed green photoluminescence is ascribed to micelles that are distinct from the yellow-photoluminescence-emitting micelles, on the basis of transmission electron microscopy observations, atomic force microscopy observations, and dynamic light scattering measurements. We examined the relationship between the structure of the molecular assemblies and the photophysical properties of the anthracene derivative in water before and after thermal or mechanical stimulation and concluded that thermal or mechanical stimuli-induced slight changes of the molecular-assembled structures in the micelles result in the change in the photoluminescence color from yellow to green in water.


Asunto(s)
Antracenos/química , Sustancias Luminiscentes/química , Tensoactivos/química , Fricción , Luminiscencia , Micelas , Temperatura , Agua/química
17.
ACS Mater Au ; 4(1): 82-91, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38221926

RESUMEN

Solar steam generation (SSG) is a promising photothermal technology to solve the global water storage issue. The potential of π-conjugated polymers as photothermal materials is significant, because their absorption range can be customized through molecular design. In this study, naphthalenediimide (NDI) and thiadiazolobenzotriazole (TBZ) were employed as bifunctional monomers to produce conjugated polymers. There are two types of polymers, P1 and P2. P1 is based on NDI, while P2 is a copolymer of NDI and TBZ in a ratio of 9:1. Both polymers had high molecular weights and sufficient thermal stability. UV-vis-near-infrared (NIR) absorption spectra revealed that both polymers have large extinction coefficients ascribed to the NDI and TBZ chromophores. Notably, the absorption spectrum of P2 exhibited a significant red shift compared to P1, resulting in a narrow optical bandgap and absorption in the NIR range. This result suggested that P2 has a higher light absorption than P1. Photoluminescence (PL) spectra were measured to elucidate the conversion of the absorbed light into thermal energy. It was found that P2 has a reduced fluorescence quantum yield as a result of the TBZ unit, signifying a proficient conversion of the photothermal energy. Based on the results, it appears that the P2 film has a greater photothermal property compared to that of the P1 film. The surface temperature of the P2 film reached approximately 50 °C under the investigated conditions. In addition, copolymer P2 exhibited an impressive SSG efficiency of 72.4% under 1 sun (1000 W/m2) irradiation. All the results suggested that narrow bandgap conjugated polymers containing the TBZ unit are highly effective materials for achieving optimal performance in SSGs.

18.
Chem Commun (Camb) ; 60(30): 4084-4087, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38506713

RESUMEN

Tetracene cyclophanes: a series of cyclic tetracene dimers bridged by two flexible ethylene glycol units demonstrated enhanced intramolecular singlet fission through through-space orientations by suppressing the H-type excited complex.

19.
Chem Commun (Camb) ; 60(27): 3653-3656, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38488046

RESUMEN

Novel water-dispersible donor-acceptor-donor π-conjugated bolaamphiphiles, having dibenzophenazine as the acceptor and heteroatom-bridged amphiphilic diarylamines as the donors, have been developed. The materials displayed a distinct photoluminescence color change in response to humidity in a poly(vinylalcohol) matrix.

20.
Chem Commun (Camb) ; 60(28): 3862, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526752

RESUMEN

Correction for 'Water-dispersible donor-acceptor-donor π-conjugated bolaamphiphiles enabling a humidity-responsive luminescence color change' by Tomoya Enjou et al., Chem. Commun., 2024, https://doi.org/10.1039/d3cc05749f.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA