Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Genome Res ; 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109147

RESUMEN

The unicellular amoeba Acanthamoeba castellanii is ubiquitous in aquatic environments, where it preys on bacteria. The organism also hosts bacterial endosymbionts, some of which are parasitic, including human pathogens such as Chlamydia and Legionella spp. Here we report complete, high-quality genome sequences for two extensively studied A. castellanii strains, Neff and C3. Combining long- and short-read data with Hi-C, we generated near chromosome-level assemblies for both strains with 90% of the genome contained in 29 scaffolds for the Neff strain and 31 for the C3 strain. Comparative genomics revealed strain-specific functional enrichment, most notably genes related to signal transduction in the C3 strain and to viral replication in Neff. Furthermore, we characterized the spatial organization of the A. castellanii genome and showed that it is reorganized during infection by Legionella pneumophila Infection-dependent chromatin loops were found to be enriched in genes for signal transduction and phosphorylation processes. In genomic regions where chromatin organization changed during Legionella infection, we found functional enrichment for genes associated with metabolism, organelle assembly, and cytoskeleton organization. Given Legionella infection is known to alter its host's cell cycle, to exploit the host's organelles, and to modulate the host's metabolism in its favor, these changes in chromatin organization may partly be related to mechanisms of host control during Legionella infection.

2.
PLoS Genet ; 13(2): e1006629, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28212376

RESUMEN

The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L. pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L. pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano/genética , Legionella pneumophila/genética , Proteínas Represoras/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Northern Blotting , Evolución Molecular , Retroalimentación Fisiológica , Perfilación de la Expresión Génica/métodos , Glucólisis/genética , Interacciones Huésped-Patógeno , Humanos , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Operón/genética , Vía de Pentosa Fosfato/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Riboswitch/genética , Espectrometría de Masas en Tándem , Virulencia/genética
3.
Environ Microbiol ; 21(3): 1035-1053, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30623561

RESUMEN

The causative agent of Legionnaires' disease, Legionella pneumophila, colonizes amoebae and biofilms in the environment. The opportunistic pathogen employs the Lqs (Legionella quorum sensing) system and the signalling molecule LAI-1 (Legionella autoinducer-1) to regulate virulence, motility, natural competence and expression of a 133 kb genomic "fitness island", including a putative novel regulator. Here, we show that the regulator termed LvbR is an LqsS-regulated transcription factor that binds to the promoter of lpg1056/hnox1 (encoding an inhibitor of the diguanylate cyclase Lpg1057), and thus, regulates proteins involved in c-di-GMP metabolism. LvbR determines biofilm architecture, since L. pneumophila lacking lvbR accumulates less sessile biomass and forms homogeneous mat-like structures, while the parental strain develops more compact bacterial aggregates. Comparative transcriptomics of sessile and planktonic ΔlvbR or ΔlqsR mutant strains revealed concerted (virulence, fitness island, metabolism) and reciprocally (motility) regulated genes in biofilm and broth respectively. Moreover, ΔlvbR is hyper-competent for DNA uptake, defective for phagocyte infection, outcompeted by the parental strain in amoebae co-infections and impaired for cell migration inhibition. Taken together, our results indicate that L. pneumophila LvbR is a novel pleiotropic transcription factor, which links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and pathogen-host cell interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Legionella pneumophila/genética , Factores de Transcripción/metabolismo , 4-Butirolactona/análogos & derivados , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Percepción de Quorum , Virulencia
4.
Mol Microbiol ; 99(4): 778-93, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26538361

RESUMEN

The causative agent of Legionnaires' disease, Legionella pneumophila, employs the autoinducer compound LAI-1 (3-hydroxypentadecane-4-one) for cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, comprising the autoinducer synthase LqsA, the sensor kinases LqsS and LqsT, as well as the response regulator LqsR. Lqs-regulated processes include pathogen-host interactions, production of extracellular filaments and natural competence for DNA uptake. Here we show that synthetic LAI-1 promotes the motility of L. pneumophila by signalling through LqsS/LqsT and LqsR. Upon addition of LAI-1, autophosphorylation of LqsS/LqsT by [γ-(32) P]-ATP was inhibited in a dose-dependent manner. In contrast, the Vibrio cholerae autoinducer CAI-1 (3-hydroxytridecane-4-one) promoted the phosphorylation of LqsS (but not LqsT). LAI-1 did neither affect the stability of phospho-LqsS or phospho-LqsT, nor the dephosphorylation by LqsR. Transcriptome analysis of L. pneumophila treated with LAI-1 revealed that the compound positively regulates a number of genes, including the non-coding RNAs rsmY and rsmZ, and negatively regulates the RNA-binding global regulator crsA. Accordingly, LAI-1 controls the switch from the replicative to the transmissive growth phase of L. pneumophila. In summary, the findings indicate that LAI-1 regulates motility and the biphasic life style of L. pneumophila through LqsS- and LqsT-dependent phosphorylation signalling.


Asunto(s)
Alcanos/metabolismo , Cetonas/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Transducción de Señal , Alcanos/farmacología , Movimiento Celular , Escherichia coli/genética , Expresión Génica , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Cetonas/farmacología , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/crecimiento & desarrollo , Movimiento , Fosforilación , Percepción de Quorum , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Vibrio cholerae/genética
5.
Environ Microbiol ; 17(4): 1338-50, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25141909

RESUMEN

Legionella pneumophila is a pathogenic bacterium commonly found in water. Eventually, it could be transmitted to humans via inhalation of contaminated aerosols. Iron is known as a key requirement for the growth of L. pneumophila in the environment and within its hosts. Many studies were performed to understand iron utilization by L. pneumophila but no global approaches were conducted. In this study, transcriptomic analyses were performed, comparing gene expression in L. pneumophila in standard versus iron restricted conditions. Among the regulated genes, a newly described one, lpp_2867, was highly induced in iron-restricted conditions. Mutants lacking this gene in L. pneumophila were not affected in siderophore synthesis or utilization. On the contrary, they were defective for growth on iron-depleted solid media and for ferrous iron uptake. A sequence analysis predicts that Lpp_2867 is a membrane protein, suggesting that it is involved in ferrous iron transport. We thus named it IroT, for iron transporter. Infection assays showed that the mutants are highly impaired in intracellular growth within their environmental host Acanthamoeba castellanii and human macrophages. Taken together, our results show that IroT is involved, directly or indirectly, in ferrous iron transport and is a key virulence factor for L. pneumophila.


Asunto(s)
Amoeba/microbiología , Hierro/metabolismo , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Transporte Biológico , Humanos , Legionella pneumophila/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Virulencia , Factores de Virulencia/genética
6.
Environ Microbiol ; 16(2): 359-81, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23957615

RESUMEN

Legionella pneumophila uses aquatic protozoa as replication niche and protection from harsh environments. Although L. pneumophila is not known to have a circadian clock, it encodes homologues of the KaiBC proteins of Cyanobacteria that regulate circadian gene expression. We show that L. pneumophila kaiB, kaiC and the downstream gene lpp1114, are transcribed as a unit under the control of the stress sigma factor RpoS. KaiC and KaiB of L. pneumophila do not interact as evidenced by yeast and bacterial two-hybrid analyses. Fusion of the C-terminal residues of cyanobacterial KaiB to Legionella KaiB restores their interaction. In contrast, KaiC of L. pneumophila conserved autophosphorylation activity, but KaiB does not trigger the dephosphorylation of KaiC like in Cyanobacteria. The crystal structure of L. pneumophila KaiB suggests that it is an oxidoreductase-like protein with a typical thioredoxin fold. Indeed, mutant analyses revealed that the kai operon-encoded proteins increase fitness of L. pneumophila in competitive environments, and confer higher resistance to oxidative and sodium stress. The phylogenetic analysis indicates that L. pneumophila KaiBC resemble Synechosystis KaiC2B2 and not circadian KaiB1C1. Thus, the L. pneumophila Kai proteins do not encode a circadian clock, but enhance stress resistance and adaption to changes in the environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Legionella pneumophila/genética , Operón , Estrés Fisiológico , Acanthamoeba castellanii/microbiología , Acanthamoeba castellanii/fisiología , Adaptación Fisiológica , Proteínas Bacterianas/genética , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Aptitud Genética , Legionella pneumophila/fisiología , Fosforilación , Filogenia , Estructura Terciaria de Proteína , ARN Bacteriano/genética
7.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559167

RESUMEN

To promote intracellular survival and infection, Legionella spp. translocate hundreds of effector proteins into eukaryotic host cells using a type IV b protein secretion system (T4bSS). T4bSS are well known to translocate soluble as well as transmembrane domain-containing effector proteins (TMD-effectors) but the mechanisms of secretion are still poorly understood. Herein we investigated the secretion of hydrophobic TMD-effectors, of which about 80 were previously reported to be encoded by L. pneumophila. A proteomic analysis of fractionated membranes revealed that TMD-effectors are targeted to and inserted into the bacterial inner membranes of L. pneumophila independent of the presence of a functional T4bSS. While the T4bSS chaperones IcmS and IcmW were critical for secretion of all tested TMD-effectors, they did not influence inner membrane targeting of these proteins. As for soluble effector proteins, translocation of TMD-effectors into host cells depended on a C-terminal secretion signal and this signal needed to be presented towards the cytoplasmic side of the inner membrane. A different secretion behavior of TMD- and soluble effectors and the need for small periplasmic loops within TMD-effectors provided strong evidence that TMD-effectors are secreted in a two-step secretion process: Initially, an inner membrane intermediate is formed, that is extracted towards the cytoplasmic side, possibly by the help of the type IV coupling protein complex and subsequently secreted into eukaryotic host cells by the T4bSS core complex. Overall, our study highlights the amazing versatility of T4bSS to secrete soluble and TMD-effectors from different subcellular locations of the bacterial cell.

8.
Environ Microbiol ; 15(2): 646-62, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23033905

RESUMEN

Legionella pneumophila is an amoeba-resistant opportunistic pathogen that performs cell-cell communication through the signalling molecule 3-hydroxypentadecane-4-one (LAI-1, Legionella autoinducer-1). The lqs (Legionella quorum sensing) gene cluster encodes the LAI-1 autoinducer synthase LqsA, the cognate sensor kinase LqsS and the response regulator LqsR. Here we show that the Lqs system includes an 'orphan' homologue of LqsS termed LqsT. Compared with wild-type L. pneumophila, strains lacking lqsT or both lqsS and lqsT show increased salt resistance, greatly enhanced natural competence for DNA acquisition and impaired uptake by phagocytes. Sensitive novel single round growth assays and competition experiments using Acanthamoeba castellanii revealed that ΔlqsT and ΔlqsS-ΔlqsT, as well as ΔlqsA and other lqs mutant strains are impaired for intracellular growth and cannot compete against wild-type bacteria upon co-infection. In contrast to the ΔlqsS strain, ΔlqsT does not produce extracellular filaments. The phenotypes of the ΔlqsS-ΔlqsT strain are partially complemented by either lqsT or lqsS, but are not reversed by overexpression of lqsA, suggesting that LqsT and LqsS are the sole LAI-1-responsive sensor kinases in L. pneumophila. In agreement with the different phenotypes of the ΔlqsT and ΔlqsS strains, lqsT and lqsS are differentially expressed in the post-exponential growth phase, and transcriptome studies indicated that 90% of the genes, which are downregulated in absence of lqsT, are upregulated in absence of lqsS. Reciprocally regulated genes encode components of a 133 kb genomic 'fitness island' or translocated effector proteins implicated in virulence. Together, these results reveal a unique organization of the L. pneumophila Lqs system comprising two partially antagonistic LAI-1-responsive sensor kinases, LqsT and LqsS, which regulate distinct pools of genes implicated in pathogen-host cell interactions, competence, expression of a genomic island or production of extracellular filaments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Competencia de la Transformación por ADN/genética , Interacciones Huésped-Patógeno/fisiología , Legionella pneumophila/fisiología , Fosfotransferasas/metabolismo , Factores de Transcripción/metabolismo , Acanthamoeba castellanii/microbiología , Proteínas Bacterianas/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/genética , Legionella pneumophila/crecimiento & desarrollo , Fosfotransferasas/genética , Percepción de Quorum/genética , Sales (Química)/farmacología
9.
Nat Commun ; 14(1): 7068, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923743

RESUMEN

Legionella pneumophila (LP) secretes more than 300 effectors into the host cytosol to facilitate intracellular replication. One of these effectors, SidH, 253 kDa in size with no sequence similarity to proteins of known function is toxic when overexpressed in host cells. SidH is regulated by the LP metaeffector LubX which targets SidH for degradation in a temporal manner during LP infection. The mechanism underlying the toxicity of SidH and its role in LP infection are unknown. Here, we determined the cryo-EM structure of SidH at 2.7 Å revealing a unique alpha helical arrangement with no overall similarity to known protein structures. Surprisingly, purified SidH came bound to a E. coli EF-Tu/t-RNA/GTP ternary complex which could be modeled into the cryo-EM density. Mutation of residues disrupting the SidH-tRNA interface and SidH-EF-Tu interface abolish the toxicity of overexpressed SidH in human cells, a phenotype confirmed in infection of Acanthamoeba castellani. We also present the cryo-EM structure of SidH in complex with a U-box domain containing ubiquitin ligase LubX delineating the mechanism of regulation of SidH. Our data provide the basis for the toxicity of SidH and into its regulation by the metaeffector LubX.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/metabolismo , Escherichia coli/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Bacterianas/metabolismo
10.
Biochim Biophys Acta ; 1808(4): 1146-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21182824

RESUMEN

Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1µM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid chain length in membrane were correlated with the increase in resistance to warnericin RK. Therefore, fatty acid profile seems to play a critical role in the sensitivity of L. pneumophila to warnericin RK.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Membrana Celular/efectos de los fármacos , Ácidos Grasos/análisis , Legionella pneumophila/efectos de los fármacos , Proteínas Bacterianas/farmacología , Membrana Celular/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Legionella pneumophila/genética , Lípidos de la Membrana/química , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , Staphylococcus/metabolismo
11.
RNA Biol ; 9(4): 503-19, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22546937

RESUMEN

The bacterium Legionella pneumophila is found ubiquitously in aquatic environments and can cause a severe pneumonia in humans called Legionnaires' disease. How this bacterium switches from intracellular to extracellular life and adapts to different hosts and environmental conditions is only partly understood. Here we used RNA deep sequencing from exponentially (replicative) and post exponentially (virulent) grown L. pneumophila to analyze the transcriptional landscape of its entire genome. We established the complete operon map and defined 2561 primary transcriptional start sites (TSS). Interestingly, 187 of the 1805 TSS of protein-coding genes contained tandem promoters of which 93 show alternative usage dependent on the growth phase. Similarly, over 60% of 713 here identified ncRNAs are phase dependently regulated. Analysis of their conservation among the seven L. pneumophila genomes sequenced revealed many strain specific differences suggesting that L. pneumophila contains a highly dynamic pool of ncRNAs. Analysis of six ncRNAs exhibiting the same expression pattern as virulence genes showed that two, Lppnc0584 and Lppnc0405 are indeed involved in intracellular growth of L. pneumophila in A. castellanii. Furthermore, L. pneumophila encodes a small RNA named RsmX that functions together with RsmY and RsmZ in the LetA-CsrA regulatory pathway, crucial for the switch to the virulent phenotype. Together our data provide new insight into the transcriptional organization of the L. pneumophila genome, identified many new ncRNAs and will provide a framework for the understanding of virulence and adaptation properties of L. pneumophila.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Legionella pneumophila/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Regiones no Traducidas 5' , Acanthamoeba castellanii/microbiología , Proteínas Bacterianas/genética , Secuencia de Bases , Mapeo Cromosómico , Secuencia de Consenso , Secuenciación de Nucleótidos de Alto Rendimiento , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/patogenicidad , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Operón , Regiones Promotoras Genéticas , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Análisis de Secuencia de ARN , Sitio de Iniciación de la Transcripción , Transcriptoma , Virulencia/genética
12.
Nat Commun ; 13(1): 762, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140216

RESUMEN

Legionella pneumophila is an intracellular bacterial pathogen that can cause a severe form of pneumonia in humans, a phenotype evolved through interactions with aquatic protozoa in the environment. Here, we show that L. pneumophila uses extracellular vesicles to translocate bacterial small RNAs (sRNAs) into host cells that act on host defence signalling pathways. The bacterial sRNA RsmY binds to the UTR of ddx58 (RIG-I encoding gene) and cRel, while tRNA-Phe binds ddx58 and irak1 collectively reducing expression of RIG-I, IRAK1 and cRel, with subsequent downregulation of IFN-ß. Thus, RsmY and tRNA-Phe are bacterial trans-kingdom regulatory RNAs downregulating selected sensor and regulator proteins of the host cell innate immune response. This miRNA-like regulation of the expression of key sensors and regulators of immunity is a feature of L. pneumophila host-pathogen communication and likely represents a general mechanism employed by bacteria that interact with eukaryotic hosts.


Asunto(s)
Eucariontes/inmunología , Interacciones Huésped-Patógeno/inmunología , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/inmunología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Proteína 58 DEAD Box , Eucariontes/genética , Vesículas Extracelulares , Humanos , Inmunidad Innata , Quinasas Asociadas a Receptores de Interleucina-1 , Enfermedad de los Legionarios/microbiología , Receptores Inmunológicos , Transducción de Señal
13.
Mol Microbiol ; 76(1): 200-19, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20199605

RESUMEN

To transit between hosts, intracellular Legionella pneumophila transform into a motile, infectious, transmissive state. Here we exploit the pathogen's life cycle to examine how guanosine tetraphosphate (ppGpp) and DksA cooperate to govern bacterial differentiation. Transcriptional profiling revealed that during transmission alarmone accumulation increases the mRNA for flagellar and Type IV-secretion components, secreted host effectors and regulators, and decreases transcripts for translation, membrane modification and ATP synthesis machinery. DksA is critical for differentiation, since mutants are defective for stationary phase survival, flagellar gene activation, lysosome avoidance and macrophage cytotoxicity. The roles of ppGpp and DksA depend on the context. For macrophage transmission, ppGpp is essential, whereas DksA is dispensable, indicating that ppGpp can act autonomously. In broth, DksA promotes differentiation when ppGpp levels increase, or during fatty acid stress, as judged by flaA expression and evasion of degradation by macrophages. For flagella morphogenesis, DksA is required for basal fliA (sigma(28)) promoter activity. When alarmone levels increase, DksA cooperates with ppGpp to generate a pulse of Class II rod RNA or to amplify the Class III sigma factor and Class IV flagellin RNAs. Thus, DksA responds to the level of ppGpp and other stress signals to co-ordinate L. pneumophila differentiation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/metabolismo , Legionella pneumophila/fisiología , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Adhesión Celular , Supervivencia Celular , Recuento de Colonia Microbiana , Flagelos/fisiología , Eliminación de Gen , Perfilación de la Expresión Génica , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Macrófagos/microbiología , Datos de Secuencia Molecular , Factores de Virulencia/genética
14.
Elife ; 102021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34882089

RESUMEN

Legionella pneumophila, the causative agent of Legionnaires' disease, a severe pneumonia, injects via a type 4 secretion system (T4SS) more than 300 proteins into macrophages, its main host cell in humans. Certain of these proteins are implicated in reprogramming the metabolism of infected cells by reducing mitochondrial oxidative phosphorylation (OXPHOS) early after infection. Here. we show that despite reduced OXPHOS, the mitochondrial membrane potential (Δψm) is maintained during infection of primary human monocyte-derived macrophages (hMDMs). We reveal that L. pneumophila reverses the ATP-synthase activity of the mitochondrial FOF1-ATPase to ATP-hydrolase activity in a T4SS-dependent manner, which leads to a conservation of the Δψm, preserves mitochondrial polarization, and prevents macrophage cell death. Analyses of T4SS effectors known to target mitochondrial functions revealed that LpSpl is partially involved in conserving the Δψm, but not LncP and MitF. The inhibition of the L. pneumophila-induced 'reverse mode' of the FOF1-ATPase collapsed the Δψm and caused cell death in infected cells. Single-cell analyses suggested that bacterial replication occurs preferentially in hMDMs that conserved the Δψm and showed delayed cell death. This direct manipulation of the mode of activity of the FOF1-ATPase is a newly identified feature of L. pneumophila allowing to delay host cell death and thereby to preserve the bacterial replication niche during infection.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Legionella pneumophila/metabolismo , Mitocondrias/metabolismo , ATPasas de Translocación de Protón/deficiencia , Adenosina Trifosfato/genética , Proteínas Bacterianas/metabolismo , Legionella pneumophila/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón/metabolismo , Sistemas de Secreción Tipo IV/metabolismo
15.
J Bacteriol ; 192(2): 446-55, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19915024

RESUMEN

The bacterial pathogen Legionella pneumophila responds to environmental changes by differentiation. At least two forms are well described: replicative bacteria are avirulent; in contrast, transmissive bacteria express virulence traits and flagella. Phenotypic analysis, Western blotting, and electron microscopy of mutants of the regulatory genes encoding RpoN, FleQ, FleR, and FliA demonstrated that flagellin expression is strongly repressed and that the mutants are nonflagellated in the transmissive phase. Transcriptome analyses elucidated that RpoN, together with FleQ, enhances transcription of 14 out of 31 flagellar class II genes, which code for the basal body, hook, and regulatory proteins. Unexpectedly, FleQ independent of RpoN enhances the transcription of fliA encoding sigma 28. Expression analysis of a fliA mutant showed that FliA activates three out of the five remaining flagellar class III genes and the flagellar class IV genes. Surprisingly, FleR does not induce but inhibits expression of at least 14 flagellar class III genes on the transcriptional level. Thus, we propose that flagellar class II genes are controlled by FleQ and RpoN, whereas the transcription of the class III gene fliA is controlled in a FleQ-dependent but RpoN-independent manner. However, RpoN and FleR might influence flagellin synthesis on a posttranscriptional level. In contrast to the commonly accepted view that enhancer-binding proteins such as FleQ always interact with RpoN to fullfill their regulatory functions, our results strongly indicate that FleQ regulates gene expression that is RpoN dependent and RpoN independent. Finally, FliA induces expression of flagellar class III and IV genes leading to the complete synthesis of the flagellum.


Asunto(s)
Proteínas Bacterianas/fisiología , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/metabolismo , Animales , Proteínas Bacterianas/genética , Western Blotting , Línea Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/fisiología , Flagelos/genética , Flagelos/ultraestructura , Flagelina/genética , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Legionella pneumophila/genética , Legionella pneumophila/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa
16.
Infect Immun ; 78(6): 2571-83, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20351136

RESUMEN

When confronted with metabolic stress, replicative Legionella pneumophila bacteria convert to resilient, infectious cells equipped for transmission. Differentiation is promoted by the LetA/LetS two-component system, which belongs to a family of signal-transducing proteins that employ a four-step phosphorelay to regulate gene expression. Histidine 307 of LetS was essential to switch on the transmission profile, but a threonine substitution at position 311 (T311M) suggested a rheostat-like function. The letS(T311M) bacteria resembled the wild type (WT) for some traits and letS null mutants for others, whereas they displayed intermediate levels of infectivity, cytotoxicity, and lysosome evasion. Although only 30 to 50% of letS(T311M) mutants became motile, flow cytometry determined that every cell eventually activated the flagellin promoter to WT levels, but expression was delayed. Likewise, letS(T311M) mutants exhibited delayed induction of RsmY and RsmZ, regulatory RNAs that relieve CsrA repression of transmission traits. Transcriptional profile analysis revealed that letS(T311M) mutants expressed the flagellar regulon and multiple other transmissive-phase loci at a higher cell density than the WT. Accordingly, we postulate that the letS(T311M) mutant may relay phosphate less efficiently than the WT LetS sensor protein, leading to sluggish gene expression and a variety of phenotypic profiles. Thus, as first described for BvgA/BvgS, rather than acting as on/off switches, this family of two-component systems exhibit rheostat activity that likely confers versatility as microbes adapt to fluctuating environments.


Asunto(s)
Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Legionella pneumophila/fisiología , Transducción de Señal , Sustitución de Aminoácidos/genética , Animales , Proteínas Bacterianas/genética , Eliminación de Gen , Macrófagos/microbiología , Ratones , Mutagénesis Sitio-Dirigida , Mutación Missense , Fosfatos/metabolismo
17.
Mol Microbiol ; 72(3): 741-62, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19400772

RESUMEN

To transit from intra- to extracellular environments, Legionella pneumophila differentiates from a replicative/non-virulent to a transmissive/virulent form using the two-component system LetA/LetS and the global repressor protein CsrA. While investigating how both regulators act co-ordinately we characterized two ncRNAs, RsmY and RsmZ, that link the LetA/LetS and CsrA regulatory networks. We demonstrate that LetA directly regulates their expression and show that RsmY and RsmZ are functional in Escherichia coli and are able to bind CsrA in vitro. Single mutants have no (ΔrsmY) or a little (ΔrsmZ) impact on virulence, but the ΔrsmYZ strain shows a drastic defect in intracellular growth in Acanthamoeba castellanii and THP-1 monocyte-derived macrophages. Analysis of the transcriptional programmes of the ΔletA, ΔletS and ΔrsmYZ strains revealed that the switch to the transmissive phase is partially blocked. One major difference between the ΔletA, ΔletS and ΔrsmYZ strains was that the latter synthesizes flagella. Taken together, LetA activates transcription of RsmY and RsmZ, which sequester CsrA and abolish its post-transcriptional repressive activity. However, the RsmYZ-CsrA pathway appears not to be the main or only regulatory circuit governing flagella synthesis. We suggest that rather RpoS and LetA, by influencing LetE and probably cyclic-di-GMP levels, regulate motility in L. pneumophila.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/patogenicidad , ARN Bacteriano/metabolismo , ARN no Traducido/metabolismo , Virulencia , Proteínas Bacterianas/genética , Secuencia de Bases , Línea Celular , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Humanos , Legionella pneumophila/genética , Datos de Secuencia Molecular , ARN Bacteriano/genética , ARN no Traducido/genética
18.
Plant Cell Physiol ; 51(12): 2092-104, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21062871

RESUMEN

Methylation of biologically active molecules is achieved by methyltransferases (MTases). MTases can act on proteins through N- or O-carboxylmethylation reactions. Methylation of lysine and glutamic acid residues was recently described on the N-terminal tail of AtPIP2;1, a plasma membrane aquaporin of plants. In this study, we combine a bioinformatic and a biochemical screen and identify two MTases of Arabidopsis thaliana, SDG7 (At2g44150) and OMTF3 (At3g61990), as acting on the N-terminal tail of AtPIP2;1, at Lys3 and Glu6, respectively. Confocal microscopy imaging showed the two enzymes to be associated with the endoplasmic reticulum. An in vitro assay using various AtPIP2;1 N-terminal peptides as a bait allowed characterization of the enzymatic properties of recombinant SDG7 and OMTF3. The two enzymes showed minimal apparent K(m) values for their substrates, S-adenosylmethionine and peptide, in the range of 5-8 and 2-9 µM, respectively. SDG7 was shown to almost exclusively mono- or di-methylate Lys3. In contrast, OMTF3 specifically methylated Glu6, this methylation being dependent on the methylation profile of the neighboring Lys3 residue. In conclusion, this study allows the characterization of the first MTases able to methylate plant transmembrane proteins and provides the first identification of a glutamate-MTase in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteína Metiltransferasas/metabolismo , Proteína O-Metiltransferasa/metabolismo , Secuencia de Aminoácidos , Acuaporinas/química , Acuaporinas/metabolismo , Arabidopsis/química , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Metilación , Datos de Secuencia Molecular , Péptidos/química , Filogenia , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteína Metiltransferasas/genética , Proteína O-Metiltransferasa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química , Especificidad por Sustrato
19.
Environ Microbiol ; 12(5): 1243-59, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20148929

RESUMEN

The amoebae-resistant opportunistic pathogen Legionella pneumophila employs a biphasic life cycle to replicate in host cells and spread to new niches. Upon entering the stationary growth phase, the bacteria switch to a transmissive (virulent) state, which involves a complex regulatory network including the lqs gene cluster (lqsA-lqsR-hdeD-lqsS). LqsR is a putative response regulator that promotes host-pathogen interactions and represses replication. The autoinducer synthase LqsA catalyses the production of the diffusible signalling molecule 3-hydroxypentadecan-4-one (LAI-1) that is presumably recognized by the sensor kinase LqsS. Here, we analysed L. pneumophila strains lacking lqsA or lqsS. Compared with wild-type L. pneumophila, the DeltalqsS strain was more salt-resistant and impaired for the Icm/Dot type IV secretion system-dependent uptake by phagocytes. Legionella pneumophila strains lacking lqsS, lqsR or the alternative sigma factor rpoS sedimented more slowly and produced extracellular filaments. Deletion of lqsA moderately reduced the uptake of L. pneumophila by phagocytes, and the defect was complemented by expressing lqsA in trans. Unexpectedly, the overexpression of lqsA also restored the virulence defect and reduced filament production of L. pneumophila mutant strains lacking lqsS or lqsR, but not the phenotypes of strains lacking rpoS or icmT. These results suggest that LqsA products also signal through sensors not encoded by the lqs gene cluster. A transcriptome analysis of the DeltalqsA and DeltalqsS mutant strains revealed that under the conditions tested, lqsA regulated only few genes, whereas lqsS upregulated the expression of 93 genes at least twofold. These include 52 genes clustered in a 133 kb high plasticity genomic island, which is flanked by putative DNA-mobilizing genes and encodes multiple metal ion efflux pumps. Upon overexpression of lqsA, a cluster of 19 genes in the genomic island was also upregulated, suggesting that LqsA and LqsS participate in the same regulatory circuit.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Islas Genómicas/fisiología , Legionella pneumophila/fisiología , Fagocitos/microbiología , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo , Acanthamoeba castellanii/crecimiento & desarrollo , Acanthamoeba castellanii/microbiología , Animales , Proteínas Bacterianas/genética , Línea Celular , Perfilación de la Expresión Génica , Células HL-60 , Histidina Quinasa , Interacciones Huésped-Patógeno , Humanos , Filamentos Intermedios , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Ratones , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fagocitos/inmunología , Proteínas Quinasas/genética , Factores de Transcripción/genética , Virulencia
20.
Artículo en Inglés | MEDLINE | ID: mdl-29404281

RESUMEN

Legionella pneumophila is a gram-negative bacterium that inhabits freshwater ecosystems, where it is present in biofilm or as planktonic form. L. pneumophila is mainly found associated with protozoa, which serve as protection from hostile environments and as replication niche. If inhaled within aerosols, L. pneumophila is also able to infect and replicate in human alveolar macrophages, eventually causing the Legionnaires' disease. The transition between intracellular and extracellular environments triggers a differentiation program in which metabolic as well as morphogenetic changes occur. We here describe the current knowledge on how the different developmental states of this bacterium are regulated, with a particular emphasis on the stringent response activated during the transition from the replicative phase to the infectious phase and the metabolic features going in hand. We propose that the cellular differentiation of this intracellular pathogen is closely associated to key metabolic changes in the bacterium and the host cell, which together have a crucial role in the regulation of L. pneumophila virulence.


Asunto(s)
Interacciones Huésped-Patógeno , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología , Estadios del Ciclo de Vida , Animales , Metabolismo Energético , Ambiente , Interacciones Huésped-Patógeno/inmunología , Humanos , Enfermedad de los Legionarios/inmunología , Enfermedad de los Legionarios/metabolismo , Redes y Vías Metabólicas , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA