Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cancer Biol ; 80: 256-275, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461153

RESUMEN

Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.


Asunto(s)
Catequina , Neoplasias , Apoptosis , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Estudios Prospectivos , Reproducibilidad de los Resultados
2.
Mol Biol Rep ; 50(3): 2685-2700, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36534236

RESUMEN

BACKGROUND: Lung cancer is one of the highly lethal forms of cancer whose incidence has worldwide rapidly increased over the past few decades. About 80-85% of all lung cancer cases constitute non-small cell lung cancer (NSCLC), with adenocarcinoma, squamous cell carcinoma and large cell carcinoma as the main subtypes. Immune checkpoint inhibitors have led to significant advances in the treatment of a variety of solid tumors, significantly improving cancer patient survival rates. METHODS AND RESULTS: The cytotoxic drugs in combination with anti-PD-(L)1 antibodies is a new method that aims to reduce the activation of immunosuppressive and cancer cell prosurvival responses while also improving direct cancer cell death. The most commonly utilized immune checkpoint inhibitors for patients with non-small cell lung cancer are monoclonal antibodies (Atezolizumab, Cemiplimab, Ipilimumab, Pembrolizumab etc.) against PD-1, PD-L1, and CTLA-4. Among them, Atezolizumab (TECENTRIQ) and Cemiplimab (Libtayo) are engineered monoclonal anti programmed death ligand 1 (PD-L1) antibodies that inhibit binding of PD-L1 to PD-1 and B7.1. As a result, T-cell proliferation and cytokine synthesis are inhibited leading to restoring the immune homeostasis to fight cancer cells. CONCLUSIONS: In this review article, the path leading to the introduction of immunotherapeutic options in lung cancer treatment is described, with analyzing the benefits and shortages of the current immunotherapeutic drugs. In addition, possibilities to co-administer immunotherapeutic agents with standard cancer treatment modalities are also considered.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Inmunoterapia/métodos
3.
Environ Res ; 233: 116476, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348632

RESUMEN

Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.


Asunto(s)
Curcumina , Neoplasias , Humanos , Curcumina/uso terapéutico , Curcumina/farmacología , Ácido Fólico/uso terapéutico , Neoplasias/tratamiento farmacológico , Solubilidad
4.
Arch Toxicol ; 97(1): 103-120, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36443493

RESUMEN

ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Carcinogénesis , Estrés Oxidativo , Apoptosis , Transformación Celular Neoplásica
5.
Semin Cancer Biol ; 69: 5-23, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31421264

RESUMEN

Application of natural product-based nanoformulations for the treatment of different human diseases, such as cancer, is an emerging field. The conventional cancer therapeutic modalities, including surgery, chemotherapy, immunotherapy, radiotherapy has limited achievements. A larger number of drawbacks are associated with these therapies, including damage to proliferating healthy tissues, structural deformities, systemic toxicity, long-term side effects, resistance to the drug by tumor cells, and psychological problems. The advent of nanotechnology in cancer therapeutics is recent; however, it has progressed and transformed the field of cancer treatment at a rapid rate. Nanotherapeutics have promisingly overcome the limitations of conventional drug delivery system, i.e., low aqueous solubility, low bioavailability, multidrug resistance, and non-specificity. Specifically, natural product-based nanoformulations are being intentionally studied in different model systems. Where it is found that these nanoformulations has more proximity and reduced side effects. The nanoparticles can specifically target tumor cells, enhancing the specificity and efficacy of cancer therapeutic modalities which in turn improves patient response and survival. The integration of phytotherapy and nanotechnology in the clinical setting may improve pharmacological response and better clinical outcome of patients.


Asunto(s)
Productos Biológicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Nanotecnología/métodos , Neoplasias/tratamiento farmacológico , Fitoterapia/métodos , Animales , Disponibilidad Biológica , Humanos , Nanopartículas/química
6.
Semin Cancer Biol ; 73: 196-218, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33130037

RESUMEN

In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias/tratamiento farmacológico , Silibina/farmacología , Animales , Humanos , Polifenoles/farmacología
7.
Mol Biol Rep ; 49(9): 8987-8999, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35474053

RESUMEN

As a landmark, scientific investigation in cytokine signaling and interferon-related anti-viral activity, signal transducer and activator of transcription (STAT) family of proteins was first discovered in the 1990s. Today, we know that the STAT family consists of several transcription factors which regulate various molecular and cellular processes, including proliferation, angiogenesis, and differentiation in human carcinoma. STAT family members play an active role in transducing signals from cell membrane to nucleus through intracellular signaling and thus activating gene transcription. Additionally, they are also associated with the development and progression of human cancer by facilitating inflammation, cell survival, and resistance to therapeutic responses. Accumulating evidence suggests that not all STAT proteins are associated with the progression of human malignancy; however, STAT3/5 are constitutively activated in various cancers, including multiple myeloma, lymphoma, breast cancer, prostate hepatocellular carcinoma, and non-small cell lung cancer. The present review highlights how STAT-associated events are implicated in cancer inflammation, angiogenesis and non-coding RNA (ncRNA) modulation to highlight potential intervention into carcinogenesis-related cellular processes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Inflamación/genética , Inflamación/metabolismo , Masculino , Neovascularización Patológica/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología
8.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364478

RESUMEN

Despite the immense therapeutic advances in the field of health sciences, cancer is still to be found among the global leading causes of morbidity and mortality. Ethnomedicinally, natural bioactive compounds isolated from various plant sources have been used for the treatment of several cancer types and have gained notable attention. Ferulic acid, a natural compound derived from various seeds, nuts, leaves, and fruits, exhibits a variety of pharmacological effects in cancer, including its proapoptotic, cell-cycle-arresting, anti-metastatic, and anti-inflammatory activities. This review study presents a thorough overview of the molecular targets and cellular signaling pathways modulated by ferulic acid in diverse malignancies, showing high potential for this phenolic acid to be developed as a candidate agent for novel anticancer therapeutics. In addition, current investigations to develop promising synergistic formulations are also discussed.


Asunto(s)
Neoplasias , Fenol , Humanos , Fenol/farmacología , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/uso terapéutico , Transducción de Señal , Neoplasias/metabolismo , Carcinogénesis
9.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557950

RESUMEN

Phloretin is a natural dihydrochalcone found in many fruits and vegetables, especially in apple tree leaves and the Manchurian apricots, exhibiting several therapeutic properties, such as antioxidant, antidiabetic, anti-inflammatory, and antitumor activities. In this review article, the diverse aspects of the anticancer potential of phloretin are addressed, presenting its antiproliferative, proapoptotic, antimetastatic, and antiangiogenic activities in many different preclinical cancer models. The fact that phloretin is a planar lipophilic polyphenol and, thus, a membrane-disrupting Pan-Assay Interference compound (PAIN) compromises the validity of the cell-based anticancer activities. Phloretin significantly reduces membrane dipole potential and, therefore, is expected to be able to activate a number of cellular signaling pathways in a non-specific way. In this way, the effects of this minor flavonoid on Bax and Bcl-2 proteins, caspases and MMPs, cytokines, and inflammatory enzymes are all analyzed in the current review. Moreover, besides the anticancer activities exerted by phloretin alone, its co-effects with conventional anticancer drugs are also under discussion. Therefore, this review presents a thorough overview of the preclinical anticancer potential of phloretin, allowing one to take the next steps in the development of novel drug candidates and move on to clinical trials.


Asunto(s)
Neoplasias , Floretina , Humanos , Floretina/farmacología , Floretina/química , Neoplasias/tratamiento farmacológico , Citocinas , Flavonoides/uso terapéutico , Caspasas
10.
Pharmacol Res ; 166: 105487, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33581287

RESUMEN

Cancer is an anomalous growth and differentiation of cells known to be governed by oncogenic factors. Plant-based natural metabolites have been well recognized to possess chemopreventive properties. Deguelin, a natural rotenoid, is among the class of bioactive phytoconstituents from a diverse range of plants with potential antineoplastic effects in different cancer subtypes. However, the precise mechanisms of how deguelin inhibits tumor progression remains elusive. Deguelin has shown promising results in targeting the hallmarks of tumor progression via inducing tumor apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Based on initial scientific excerpts, deguelin has been reported to inhibit tumor growth via different signaling pathways, including mitogen-activated protein kinase, phosphoinositide 3-kinase, serine/threonine protein kinase B (also known as Akt), mammalian target of rapamycin, nuclear factor-κB, matrix metalloproteinase (MMP)-2, MMP-9 and caspase-3, caspase-8, and caspase-9. This review summarizes the mechanistic insights of antineoplastic action of deguelin to gain a clear understanding of its therapeutic effects in cancer. The anticancer potential of deguelin with respect to its efficacy in targeting tumorigenesis via nanotechnological approaches is also investigated. The initial scientific findings have presented deguelin as a promising antitumorigenic agent which can be used for monotherapy as well as synergistically to augment efficacy of chemotherapeutic treatment regimes.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinogénesis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Rotenona/análogos & derivados , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Rotenona/farmacología , Rotenona/uso terapéutico
11.
Nutr Cancer ; 72(8): 1276-1289, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31648572

RESUMEN

Over the past decades, studies of phytochemicals as modifiers of radiotherapeutic efficacy have become increasingly popular to improve the treatment outcome of human malignancies. In the current comprehensive review article, radiosensitizing effects of curcumin, a yellow-colored polyphenolic constituent of turmeric, in various preclinical cancer models, both In Vitro and In Vivo, are presented. Attenuation of radioadaptation and augmentation of irradiation-induced cancer cell killing are achieved through multifaceted action of curcumin on suppression of prosurvival and antiapoptotic factors. Most importantly, curcumin can block radiation-triggered NF-κB signaling pathway and downregulate downstream effector proteins, thereby conferring potentiation of radioresponses. Based on the elucidated molecular mechanisms but also due to its safety profile and low cost, curcumin might be considered a promising adjuvant agent to enhance radiotherapeutic efficacy in the treatment of various cancer types formed in different human organ systems. Further efforts to translate the current preclinical knowledge to the real application of curcumin in combinatorial radiotherapeutic strategies in clinical settings are necessary.AbbreviationsAKTprotein kinase BARMSalveolar rhabdomyosarcomaATMataxia telangiectasia mutatedBaxBcl-2-associated X proteinBcl-2B-cell lymphoma 2CDC2cyclin-dependent kinase 2Bcl-xLB-cell lymphoma-extra largec-FLIPcellular FLICE-like inhibitory proteinCDDPcisplatinCOX-2cyclooxygenase-2cyt ccytochrome cDNA-PKcsDNA-dependent protein kinaseEGFRepidermal growth factor receptorEMTepithelial-mesenchymal transitionERKextracellular signal-regulated kinaseESEwing`s sarcomaETS2erythroblastosis virus transcription factor 2GBMglioblastoma multiformeHCChepatocellular carcinomaHNSCChead and neck squamous cell carcinomaIAPinhibitor of apoptosis proteinIκBαinhibitor of κB alphaIKKinhibitor of κB kinaseIRionizing radiationlncRNAlong non-coding RNAlucluciferaseMcl-1myeloid cell leukemia-1MDR1multidrug resistance protein 1miRmicroRNAMMP-9matrix metalloproteinase-9mTORmammalian target of rapamycinNBneuroblastomaNF-κBnuclear factor-κBNPCnasopharyngeal carcinomaNSCLCnon-small cell lung cancerOSCCoral squamous cell carcinomaPARPpoly-(ADP-ribose)-polymerasepH2AXphosphorylated histone 2AX-immunoreactivePI3Kphosphatidylinositol 3-kinasePrp4KPre-mRNA processing factor 4 kinaseRCCrenal cell carcinomaROSreactive oxygen speciesSCCsquamous cell carcinomaSLNsolid lipid nanoparticleSOD2superoxide dismutase 2TERTtelomerase reverse transcriptaseTNF-αtumor necrosis factor-αTxnRd1thioredoxin reductase-1VEGFvascular endothelial growth factorXIAPX-linked inhibitor of apoptosis proteinΔΨmmitochondrial membrane potential.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Modelos Animales de Enfermedad , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal
12.
Int J Mol Sci ; 20(3)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717416

RESUMEN

Tocotrienols, found in several natural sources such as rice bran, annatto seeds, and palm oil have been reported to exert various beneficial health promoting properties especially against chronic diseases, including cancer. The incidence of cancer is rapidly increasing around the world not only because of continual aging and growth in global population, but also due to the adaptation of Western lifestyle behaviours, including intake of high fat diets and low physical activity. Tocotrienols can suppress the growth of different malignancies, including those of breast, lung, ovary, prostate, liver, brain, colon, myeloma, and pancreas. These findings, together with the reported safety profile of tocotrienols in healthy human volunteers, encourage further studies on the potential application of these compounds in cancer prevention and treatment. In the current article, detailed information about the potential molecular mechanisms of actions of tocotrienols in different cancer models has been presented and the possible effects of these vitamin E analogues on various important cancer hallmarks, i.e., cellular proliferation, apoptosis, angiogenesis, metastasis, and inflammation have been briefly analyzed.


Asunto(s)
Neoplasias/tratamiento farmacológico , Tocotrienoles/farmacología , Tocotrienoles/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Estudios Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Tocotrienoles/química , Resultado del Tratamiento
13.
Drug Metab Rev ; 49(1): 56-83, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27826992

RESUMEN

Catechol-O-methyltransferase, COMT, is an important phase II enzyme catalyzing the transfer of a methyl-group from S-adenosylmethionine to a catechol-containing substrate molecule. A genetic variant Val158Met in the COMT gene leads to a several-fold decrease in the enzymatic activity giving rise to the accumulation of potentially carcinogenic endogenous catechol estrogens and their reactive intermediates and increasing thus the risk of tumorigenesis. However, numerous association studies between the COMT genotype and susceptibility to various malignancies have shown inconsistent and controversial findings indicating that additional gene-gene and gene-environment interactions might be crucial in modulating the physiological role of the COMT. In this review article, the important contribution of dietary catechol-containing flavonoids to modification of the relationships between the COMT genotype and cancer risk is discussed. Whereas, the diverse anticancer activities of common phytochemicals, such as green tea polyphenols, quercetin, fisetin or luteolin, can be markedly changed (both decreased or increased) by the COMT-mediated O-methylation of these exogenous substrates, flavonoids can also behave as potent inhibitors of the COMT enzyme slowing detoxification of endogenous catechol estrogens. Such a many-featured functioning of the COMT and its complex regulation by several different genetic and environmental factors, including plant-based food ingredients, emphasizes the necessity to further stratify the association studies between the COMT genotype and tumor risk by consumption of catechol-containing dietary flavonoids. Currently, it can be only speculated that some of the possible associations might be masked by the regular intake of specific food polyphenols, taking effect in certain communities or populations.


Asunto(s)
Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Catecoles/metabolismo , Estrógenos de Catecol/metabolismo , Predisposición Genética a la Enfermedad/genética , Neoplasias/genética , Inhibidores de Catecol O-Metiltransferasa/farmacología , Dieta , Estrógenos de Catecol/efectos adversos , Flavonoides/farmacología , Humanos , Polimorfismo de Nucleótido Simple/genética
14.
Nutr Cancer ; 69(8): 1119-1150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29083244

RESUMEN

Several epidemiological findings have demonstrated that specific flavonoids can be responsible for reduction of the risk of certain cancer types. However, these results are still rather limited, inconclusive and controversial. Therefore, in this comprehensive review article the findings reported to date about the associations between dietary intake of individual flavonoid compounds and cancer incidence are compiled and analyzed. Also, the possible reasons for inconsistencies are brought forth and discussed. As diet is a potentially modifiable factor in our behavioral choices, further large-scale prospective studies with longer follow-up times, different populations, various doses and exposure timing as well as diverse well-controlled confounders are highly needed to confirm or disprove the current epidemiological knowledge about the role of flavonoids on cancer risk. Regarding the promising data to date, more research on bioavailability, metabolism and biological action mechanisms of these plant secondary metabolites is also encouraged.


Asunto(s)
Carcinogénesis , Dieta , Flavonoides/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/epidemiología , Disponibilidad Biológica , Flavonoides/farmacocinética , Humanos , Incidencia , Factores de Riesgo
15.
Curr Genomics ; 18(1): 3-26, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28503087

RESUMEN

Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of patients. In this comprehensive review article, the current knowledge about the anticancer activities of flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differentiation inducing effects for certain compounds. Considering the low toxicity of these substances in normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional chemotherapeutic drugs.

16.
Tumour Biol ; 37(10): 12927-12939, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27448306

RESUMEN

In the last few decades, the scientific community has discovered an immense potential of natural compounds in the treatment of dreadful diseases such as cancer. Besides the availability of a variety of natural bioactive molecules, efficacious cancer therapy still needs to be developed. So, to design an efficacious cancer treatment strategy, it is essential to understand the interactions of natural molecules with their respective cellular targets. Quercetin (Quer) is a naturally occurring flavonol present in many commonly consumed food items. It governs numerous intracellular targets, including the proteins involved in apoptosis, cell cycle, detoxification, antioxidant replication, and angiogenesis. The weight of available synergistic studies vigorously fortifies the utilization of Quer as a chemoprevention drug. This extensive review covers various therapeutic interactions of Quer with their recognized cellular targets involved in cancer treatment.


Asunto(s)
Anticarcinógenos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Quercetina/farmacología , Animales , Humanos
17.
Nutr Cancer ; 66(2): 177-93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24377461

RESUMEN

Food-derived flavonoid quercetin, widely distributed in onions, apples, and tea, is able to inhibit growth of various cancer cells indicating that this compound can be considered as a good candidate for anticancer therapy. Although the exact mechanism of this action is not thoroughly understood, behaving as antioxidant and/or prooxidant as well as modulating different intracellular signalling cascades may all play a certain role. Such inhibitory activity of quercetin has been shown to depend first of all on cell lines and cancer types; however, no comprehensive site-specific analysis of this effect has been published. In this review article, cytotoxicity constants of quercetin measured in various human malignant cell lines of different origin were compiled from literature and a clear cancer selective action was demonstrated. The most sensitive malignant sites for quercetin revealed to be cancers of blood, brain, lung, uterine, and salivary gland as well as melanoma whereas cytotoxic activity was higher in more aggressive cells compared to the slowly growing cells showing that the most harmful cells for the organism are probably targeted. More research is needed to overcome the issues of poor water solubility and relatively low bioavailability of quercetin as the major obstacles limiting its clinical use.


Asunto(s)
Antineoplásicos/farmacología , Polifenoles/farmacología , Quercetina/farmacología , Animales , Antioxidantes/farmacología , Disponibilidad Biológica , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos Clínicos Fase I como Asunto , Modelos Animales de Enfermedad , Humanos , Oxidación-Reducción
18.
Pharm Biol ; 52(7): 855-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24920231

RESUMEN

CONTEXT: Despite diagnostic and therapeutic advancements, the burden of cancer is still increasing worldwide. Toxicity of current chemotherapeutics to normal cells and their resistance to tumor cells highlights the urgent need for new drugs with minimal adverse side effects. The use of natural anticancer agents has entered into the area of cancer research and increased efforts are being made to isolate bioactive products from medicinal plants. OBJECTIVE: To lead the search for plants with potential cytotoxic activity, ethnopharmacological knowledge can give a great contribution. Therefore, the attention of this review is devoted to the natural remedies traditionally used for the cancer treatment by Estonian people over a period of almost 150 years. METHODS: Two massive databases, the first one stored in the Estonian Folklore Archives and the second one in the electronic database HERBA ( http://herba.folklore.ee/ ), containing altogether more than 30 000 ethnomedicinal texts were systematically reviewed to compile data about the Estonian folk traditional experiences on natural anticancer remedies. RESULTS AND CONCLUSION: As a result, 44 different plants with potential anticancer properties were elicited, 5 of which [Angelica sylvestris L. (Apiaceae), Anthemis tinctoria L. (Asteraceae), Pinus sylvestris L. (Pinaceae), Sorbus aucuparia L. (Rosaceae), and Prunus padus L. (Rosaceae)] have not been previously described with respect to their tumoricidal activities in the scientific literature, suggesting thus the potential herbal materials for further investigations of natural anticancer compounds.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Etnofarmacología/tendencias , Plantas Medicinales , Bases de Datos Farmacéuticas , Estonia , Humanos
19.
Curr Pharmacol Rep ; 9(3): 144-153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213566

RESUMEN

The world recently witnessed the emergence of new epidemic outbreaks like COVID-19 and mpox. The 2022 outbreak of mpox amid COVID-19 presents an intricate situation and requires strategies to combat the status quo. Some of the challenges to controlling an epidemic include present knowledge of the disease, available treatment options, appropriate health infrastructures facilities, current scientific methods, operations concepts, availability of technical staff, financial funds, and lastly international policies to control an epidemic state. These insufficiencies often hinder the control of disease spread and jeopardize the health of countless people. Also, disease outbreaks often put a huge burden on the developing economies. These countries are the worst affected and are immensely dependent on assistance provided from the larger economies to control such outbreaks. The first case of mpox was reported in the 1970s and several outbreaks were detected thereafter in the endemic areas eventually leading to the recent outbreak. Approximately, more than 80,000 individuals were infected, and 110 countries were affected by this outbreak. Yet, no definite vaccines and drugs are available to date. The lack of human clinical trials affected thousands of individuals in availing definite disease management. This paper focuses on the epidemiology of mpox, scientific concepts, and treatment options including future treatment modalities for mpox.

20.
Explor Target Antitumor Ther ; 4(2): 208-216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205316

RESUMEN

Tannins are secondary metabolites that belong to the family of polyphenolic compounds and have gained a huge interest among researchers due to their versatile therapeutic potential. After lignin, these are the second most abundant polyphenols found in almost every plant part like stem, bark, fruit, seed, leaves, etc. Depending upon their structural composition, these polyphenols can be divided into two distinct groups, namely condensed tannins and hydrolysable tannins. Hydrolysable tannins can be further divided into two types: gallotannins and ellagitannins. Gallotannins are formed by the esterification of D-glucose hydroxyl groups with gallic acid. The gallolyl moieties are bound by a depside bond. The current review focuses mainly on the anti-carcinogenic potential of recently discovered gallotannins, ginnalin A, and hamamelitannin (HAM). Both of these gallotannins possess two galloyl moieties linked to a core monosaccharide having anti-oxidant, anti-inflammatory, and anti-carcinogenic abilities. Ginnalin A is found in plants of the genus Acer whereas HAM is present in witch hazel plants. The biosynthetic pathway of ginnalin A along with the mechanism of the anti-cancer therapeutic potential of ginnalin A and HAM has been discussed. This review will certainly help researchers to work further on the chemo-therapeutic abilities of these two unique gallotannins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA