Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anesth Analg ; 138(4): 856-865, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347707

RESUMEN

BACKGROUND: Developmental anesthetic neurotoxicity is well described in animal models for GABAergic, sedating drugs. Here we investigate the role of the benzodiazepine, diazepam on spatial and recognition memory of young adult rats after neonatal exposure. METHODS: On postnatal day 7, male (n = 30) and female (n = 30) rats were exposed to diazepam (30 mg/kg intraperitoneally) or vehicle. On postnatal day 42, animals started a series of behavioral tests including Barnes maze (spatial memory), object recognition battery (recognition memory), and open field and elevated plus maze (anxiety). In a separate cohort, blood gases were obtained from diazepam-exposed animals and compared to isoflurane-exposed animals (1 MAC for 4 hours). RESULTS: Male animals exposed to diazepam had impaired performance in the Barnes maze and were unable to differentiate the goal quadrant from chance (1-sample t test; tdiazepam/male (14) = 1.49, P = .158). Female rats exposed to diazepam performed the same as the vehicle controls ( tdiazepam/female (12) = 3.4, P = .005, tvehicle/female (14) = 3.62, P = .003, tvehicle/male (13) = 4.76, P < .001). There were no statistical differences in either males or females in measures of recognition memory, anxiety, or locomotor activity in other behavioral tests. Physiologic measurements of arterial blood gases taken from animals under sedation with diazepam were much less aberrant than those exposed to the volatile anesthetic isoflurane by t test (pH diazepam [M = 7.56, standard deviation {SD} = 0.11] versus pH Isoflurane [M = 7.15, SD = 0.02], t (10) = 8.93, P < .001; Paco 2diazepam [M = 32.8 mm Hg, SD = 10.1] versus Paco 2Isoflurane [M = 91.8 mm Hg, SD = 5.8], t (10) = 8.93, P < .001). CONCLUSIONS: The spatial memory results are consistent with volatile anesthetic suggesting a model in which development of the GABA system plays a critical role in determining susceptibility to behavioral deficits.


Asunto(s)
Anestésicos , Isoflurano , Humanos , Ratas , Animales , Masculino , Femenino , Diazepam/toxicidad , Hipnóticos y Sedantes/toxicidad , Isoflurano/toxicidad , Memoria Espacial , Trastornos de la Memoria/inducido químicamente , Gases , Aprendizaje por Laberinto/fisiología
2.
Wilderness Environ Med ; 34(4): 498-508, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923683

RESUMEN

INTRODUCTION: AR36 is a pharmaceutical-grade plant extract used to support cardiovascular health in traditional Chinese medicine. Studies suggest that AR36 may prevent acute mountain sickness (AMS) during gradual ascent to high altitude. This randomized, placebo-controlled Phase 2 trial aimed to evaluate dosing regimens and assess efficacy and safety of AR36 for AMS prevention during rapid ascent. METHODS: Participants received placebo, low-dose AR36 (225 mg twice daily for 14 d prior and 5 d at altitude), or high-dose AR36 (12 d placebo, 300 mg twice daily for 2 d prior and 5 d at altitude). The primary efficacy outcome was 1993 Lake Louise Scoring System (LLSS) score on the morning after ascent. Safety was assessed through the proportion of treatment-emergent adverse events (TEAEs). RESULTS: One hundred thirty-two participants were randomized. Mean±SD age was 31.4±8.6 (range, 19-54) y. Baseline characteristics did not differ across groups. Lake Louise Scoring System scores on Day 16 in the placebo, low-dose, and high-dose groups were 4.03 (2.88), 4.42 (3.17), and 3.5 (2.31), respectively (placebo versus low-dose, P=0.462; placebo versus high-dose, P=0.574; n=110). The incidence of AMS on Day 16 was 66.7% in the placebo, 61.1% in the low-dose, and 55.3% in the high-dose group (P=0.66). The proportion of TEAEs in the placebo, low-dose, and high-dose groups was 38.4% (81), 28.4% (60), and 33.2% (70), respectively (P=0.205; n=127). There was no statistical difference between groups in LLSS, incidence of AMS, or TEAEs. CONCLUSIONS: AR36 did not improve LLSS or AMS incidence using the current regimens. AR36 was well tolerated.


Asunto(s)
Mal de Altura , Humanos , Mal de Altura/prevención & control , Mal de Altura/epidemiología , Enfermedad Aguda , Altitud , Extractos Vegetales/efectos adversos , Método Doble Ciego
3.
Anesthesiology ; 133(4): 852-866, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32930727

RESUMEN

BACKGROUND: Cognitive deficits after perinatal anesthetic exposure are well established outcomes in animal models. This vulnerability is sex-dependent and associated with expression levels of the chloride transporters NKCC1 and KCC2. The hypothesis was that androgen signaling, NKCC1 function, and the age of isoflurane exposure are critical for the manifestation of anesthetic neurotoxicity in male rats. METHODS: Flutamide, an androgen receptor antagonist, was administered to male rats on postnatal days 2, 4, and 6 before 6 h of isoflurane on postnatal day 7 (ntotal = 26). Spatial and recognition memory were subsequently tested in adulthood. NKCC1 and KCC2 protein levels were measured from cortical lysates by Western blot on postnatal day 7 (ntotal = 20). Bumetanide, an NKCC1 antagonist, was injected immediately before isoflurane exposure (postnatal day 7) to study the effect of NKCC1 inhibition (ntotal = 48). To determine whether male rats remain vulnerable to anesthetic neurotoxicity as juveniles, postnatal day 14 animals were exposed to isoflurane and assessed as adults (ntotal = 30). RESULTS: Flutamide-treated male rats exposed to isoflurane successfully navigated the spatial (Barnes maze probe trial F[1, 151] = 78; P < 0.001; mean goal exploration ± SD, 6.4 ± 3.9 s) and recognition memory tasks (mean discrimination index ± SD, 0.09 ± 0.14; P = 0.003), unlike isoflurane-exposed controls. Flutamide changed expression patterns of NKCC1 (mean density ± SD: control, 1.49 ± 0.69; flutamide, 0.47 ± 0.11; P < 0.001) and KCC2 (median density [25th percentile, 75th percentile]: control, 0.23 [0.13, 0.49]; flutamide, 1.47 [1.18,1.62]; P < 0.001). Inhibiting NKCC1 with bumetanide was protective for spatial memory (probe trial F[1, 162] = 6.6; P = 0.011; mean goal time, 4.6 [7.4] s). Delaying isoflurane exposure until postnatal day 14 in males preserved spatial memory (probe trial F[1, 140] = 28; P < 0.001; mean goal time, 6.1 [7.0] s). CONCLUSIONS: Vulnerability to isoflurane neurotoxicity is abolished by blocking the androgen receptor, disrupting the function of NKCC1, or delaying the time of exposure to at least 2 weeks of age in male rats. These results support a dynamic role for androgens and chloride transporter proteins in perinatal anesthetic neurotoxicity.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Isoflurano/toxicidad , Receptores Androgénicos/fisiología , Miembro 2 de la Familia de Transportadores de Soluto 12/fisiología , Factores de Edad , Antagonistas de Receptores Androgénicos/farmacología , Animales , Animales Recién Nacidos , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Sprague-Dawley , Factores Sexuales
4.
Br J Anaesth ; 124(5): 585-593, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32145876

RESUMEN

In March 2019, SmartTots, a public-private partnership between the US Food and Drug Administration and the International Anesthesia Research Society, hosted a meeting attended by research experts, anaesthesia journal editors, and government agency representatives to discuss the continued need for rigorous preclinical research and the importance of establishing reporting standards for the field of anaesthetic perinatal neurotoxicity. This group affirmed the importance of preclinical research in the field, and welcomed novel and mechanistic approaches to answer some of the field's largest questions. The attendees concluded that summarising the benefits and disadvantages of specific model systems, and providing guidance for reporting results, would be helpful for designing new experiments and interpreting results across laboratories. This expert opinion report is a summary of these discussions, and includes a focused review of current animal models and reporting standards for the field of perinatal anaesthetic neurotoxicity. This will serve as a practical guide and road map for novel and rigorous experimental work.


Asunto(s)
Anestésicos/efectos adversos , Investigación Biomédica/normas , Evaluación Preclínica de Medicamentos/normas , Síndromes de Neurotoxicidad/etiología , Informe de Investigación/normas , Animales , Investigación Biomédica/métodos , Niño , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Humanos , Asociación entre el Sector Público-Privado
5.
Br J Anaesth ; 122(4): 490-499, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30857605

RESUMEN

BACKGROUND: The factors determining peak susceptibility of the developing brain to anaesthetics are unclear. It is unknown why postnatal day 7 (P7) male rats are more vulnerable to anaesthesia-induced memory deficits than littermate females. Given the precocious development of certain regions in the female brain during the neonatal critical period, we hypothesised that females are susceptible to anaesthetic brain injury at an earlier time point than previously tested. METHODS: Female rats were exposed to isoflurane (Iso) 1 minimum alveolar concentration or sham anaesthesia at P4 or P7. Starting at P35, rats underwent a series of behavioural tasks to test their spatial and recognition memory. Cell death immediately after anaesthesia was quantified by Fluoro-Jade C staining in select brain regions, and developmental expression of the chloride transporters KCC2 and NKCC1 was analysed by immunoblotting in male and female rats at P4 and P7. RESULTS: Female rats exposed to Iso at P4 displayed impaired spatial, object-place, -context, and social recognition memory, and increased cell death in the hippocampus and laterodorsal thalamus. Female rats exposed at P7 exhibited only decreased performance in object-context compared with control. The ratio of NKCC1/KCC2 expression in cerebral cortex was higher in P4 females than in P7 females, and similar to that in P7 males. CONCLUSIONS: Female rats exposed to Iso at P4 are sensitive to anaesthetic injury historically observed in P7 males. This is consistent with a comparably immature developmental state in P4 females and P7 males. The window of anaesthetic vulnerability correlates with sex-specific cortical expression of chloride transporters NKCC1 and KCC2. These findings suggest that both sex and developmental age play important roles in determining the outcome after early anaesthesia exposure.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Disfunción Cognitiva/inducido químicamente , Isoflurano/toxicidad , Factores de Edad , Anestésicos por Inhalación/administración & dosificación , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Corteza Cerebral/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Esquema de Medicación , Femenino , Isoflurano/administración & dosificación , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Factores Sexuales , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Cotransportadores de K Cl
6.
Anesth Analg ; 129(5): 1365-1373, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31517674

RESUMEN

BACKGROUND: Early life anesthesia exposure results in long-term cognitive deficits in rats. Environmental enrichment consisting of social housing, a stimulating environment, and voluntary exercise can rescue this deficit. We hypothesized that exercise alone is sufficient to rescue the cognitive deficit associated with perinatal anesthesia. METHODS: Postnatal day 7 male rats (P7) underwent isoflurane (Iso) or sham exposure and were subsequently weaned at P21. They were then singly housed in a cage with a running wheel or a fixed wheel. After 3 weeks of exercise, animals underwent behavioral testing for spatial and recognition memory assessments. Animals were killed at various time points to accomplish either bromodeoxyuridine (BrdU) labeling or quantitative real-time polymerase chain reaction (qRT-PCR) to quantify brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) levels. RESULTS: Postweaning voluntary exercise rescued the long-term spatial memory deficit associated with perinatal Iso exposure. Iso-sedentary animals did not discriminate the goal quadrant, spending no more time than chance during the Barnes maze probe trial (1-sample t test, P = .524) while all other groups did (1-sample t test, PIso-exercise = .033; Pcontrol [Con]-sedentary = .004). We did not find a deficit in recognition memory tasks after Iso exposure as we observed previously. BrdU incorporation in the adult hippocampus of Iso-sedentary animals was decreased compared to sedentary controls (Tukey P = .005). Exercise prevented this decrease, with Iso-exercise animals having more proliferation than Iso-sedentary (Tukey P < .001). There was no effect of exercise or Iso on BDNF mRNA in either the cortex or hippocampus (cortex: FExercise[1,32] = 0.236, P = .631; FIso [1,32] = 0.038, P = .847; FInteraction [1,32] = 1.543, P = .223; and hippocampus: FExercise[1,33] = 1.186, P = .284; FIso [1,33] = 1.46, P = .236; FInteraction[1,33] = 1.78, P = .191). CONCLUSIONS: Exercise restores BrdU incorporation and rescues a spatial memory deficit after early life anesthesia exposure. This demonstrates sufficiency of exercise alone in the context of environmental enrichment to recover a behavioral phenotype after a perinatal insult.


Asunto(s)
Anestésicos por Inhalación/toxicidad , Isoflurano/toxicidad , Trastornos de la Memoria/prevención & control , Condicionamiento Físico Animal , Memoria Espacial/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
Artículo en Inglés | MEDLINE | ID: mdl-38973590

RESUMEN

OBJECTIVE: Benzodiazepines are extensively utilized in pediatric anesthesia and critical care for their anxiolytic and sedative properties. However, preclinical studies indicate that neonatal exposure to GABAergic drugs, including benzodiazepines, leads to long-term cognitive deficits, potentially mediated by altered GABAergic signaling during brain development. This preclinical study investigated the impact of early-life diazepam exposure on cortical neuronal morphology, specifically exploring dendritic arborization and spine density, crucial factors in synaptogenesis. METHODS: Male and female Sprague Dawley rat pups were exposed to a single neonatal dose of diazepam (30 mg/kg) or vehicle on postnatal day (PND) 7. Golgi-Cox staining was used to assess cortical pyramidal neuron development at 4 developmental stages: neonatal (PND8), infantile (PND15), juvenile (PND30), and adolescence (PND42). Animals were randomized equally to 4 groups: male-vehicle, male-diazepam, female-vehicle, and female-diazepam. Neuronal morphology was evaluated after reconstruction in neurolucida, and dendritic spine density was analyzed through high-power photomicrographs using ImageJ. RESULTS: Diazepam exposure resulted in decreased dendritic complexity in both sexes, with reduced arborization and spine density observed in cortical pyramidal neurons. Significant differences were found at each developmental stage, indicating a persistent impact. Dendritic length increased with age but was attenuated by diazepam exposure. Branching length analysis revealed decreased complexity after diazepam treatment. Spine density at PND42 was significantly reduced in both apical and basal dendrites after diazepam exposure. CONCLUSIONS: Neonatal diazepam exposure adversely affected cortical pyramidal neuron development, leading to persistent alterations in dendritic arborization and spine density. These structural changes suggest potential risks associated with early-life diazepam exposure. Further research is needed to unravel the functional consequences of these anatomic alterations.

9.
Anesth Analg ; 117(1): 65-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23632056

RESUMEN

Propofol has been reported to have high stability in glass and relatively high stability up to 24 hours in polyvinyl chloride-based medical plastics. Recent publications have observed the effects of propofol on cells and tissues grown in culture. Many cell culture plastics are formulated from polystyrene but we could find little information on the stability of propofol exposed to these products. We observed very little change in the concentration of propofol diluted in cell culture medium over 24 hours when exposed to glass, but substantial loss of the drug when exposed to 96-well polystyrene cell culture plates. This decrease was most rapid in the first hour but continued until 24 hours. The type of plastic used in cell and tissue culture experiments with propofol may influence the results by increasing the apparent dose required to see an effect.


Asunto(s)
Química Farmacéutica/métodos , Plásticos/química , Poliestirenos/química , Propofol/metabolismo , Técnicas de Cultivo de Tejidos/instrumentación , Estabilidad de Medicamentos , Plásticos/efectos adversos , Poliestirenos/efectos adversos , Factores de Tiempo , Técnicas de Cultivo de Tejidos/normas
10.
Anesth Analg ; 117(4): 847-858, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23477959

RESUMEN

BACKGROUND: Carbon monoxide poisoning is a significant problem in most countries, and a reliable method of quick diagnosis would greatly improve patient care. Until the recent introduction of a multiwavelength "pulse CO-oximeter" (Masimo Rainbow SET(®) Radical-7), obtaining carboxyhemoglobin (COHb) levels in blood required blood sampling and laboratory analysis. In this study, we sought to determine whether hypoxemia, which can accompany carbon monoxide poisoning, interferes with the accurate detection of COHb. METHODS: Twelve healthy, nonsmoking, adult volunteers were fitted with 2 standard pulse-oximeter finger probes and 2 Rainbow probes for COHb detection. A radial arterial catheter was placed for blood sampling during 3 interventions: (1) increasing hypoxemia in incremental steps with arterial oxygen saturations (SaO2) of 100% to 80%; (2) normoxia with incremental increases in %COHb to 12%; and (3) elevated COHb combined with hypoxemia with SaO2 of 100% to 80%. Pulse-oximeter (SpCO) readings were compared with simultaneous arterial blood values at the various increments of hypoxemia and carboxyhemoglobinemia (≈25 samples per subject). Pulse CO-oximeter performance was analyzed by calculating the mean bias (SpCO - %COHb), standard deviation of the bias (precision), and the root-mean-square error (A(rms)). RESULTS: The Radical-7 accurately detected hypoxemia with both normal and elevated levels of COHb (bias mean ± SD: 0.44% ± 1.69% at %COHb <4%, and -0.29% ± 1.64% at %COHb ≥4%, P < 0.0001, and A(rms) 1.74% vs 1.67%). COHb was accurately detected during normoxia and moderate hypoxia (bias mean ± SD: -0.98 ± 2.6 at SaO2 ≥95%, and -0.7 ± 4.0 at SaO2 <95%, P = 0.60, and A(rms) 2.8% vs 4.0%), but when SaO2 decreased below approximately 85%, the pulse CO-oximeter always gave low signal quality errors and did not report SpCO values. CONCLUSIONS: In healthy volunteers, the Radical-7 pulse CO-oximeter accurately detects hypoxemia with both low and elevated COHb levels, and accurately detects COHb, but only reads SpCO when SaO2 is more than approximately 85%.


Asunto(s)
Carboxihemoglobina/metabolismo , Hipoxia/sangre , Oximetría/métodos , Oximetría/normas , Adolescente , Adulto , Intoxicación por Monóxido de Carbono/diagnóstico , Femenino , Humanos , Hipoxia/diagnóstico , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Artículo en Inglés | MEDLINE | ID: mdl-37852006

RESUMEN

Introduction: Basic pharmacokinetic (PK) and pharmacodynamic models of the phytocannabinoids Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are critical for developing translational models of exposure and toxicity. The neonatal period is a particularly important time to study the effects of cannabinoids, yet there are few studies of cannabinoid PKs by different routes such as direct injection or breast milk ingestion. To study this question, we have developed a translationally relevant rodent model of perinatal cannabinoid administration by measuring plasma levels of THC and CBD after different routes and preparations of these drugs. Materials and Methods: Adult animals and pups were injected with THC or CBD either intraperitoneally or subcutaneously, and plasma was analyzed by liquid chromatography-tandem mass spectrometry to measure cannabinoid levels collected at specified intervals. We also tested the effect of preparation of the drug using an oil-based vehicle (sesame oil) and an aqueous vehicle (Tween). Finally, we measured the plasma levels of cannabinoids in neonatal pups that were transmitted through breast milk after intraperitoneal injection to nursing dams. Results: We observed differences in the PK profiles of cannabinoids in adults and neonatal pups that were dependent on the route of administration and type of vehicle. Cannabinoids prepared in aqueous vehicle, injected intraperitoneally, resulted in a high peak in plasma concentration, which rapidly decreased. In contrast, subcutaneous injections using sesame oil as a vehicle resulted in a slow rise and low plateau in plasma concentration. Intraperitoneal injections with sesame oil as a vehicle resulted in a slower rise compared with aqueous vehicle, but an earlier and higher peak compared with subcutaneous injection. Finally, the levels of THC and CBD that were similar to direct subcutaneous injections were measured in the plasma of pups nursing from intraperitoneally injected dams. Conclusions: The route of administration and the preparation of the drug have important and significant effects on the PK profiles of THC and CBD in rats. These results can be used to create different clinically relevant exposure paradigms in pups and adults, such as short high-dose exposure or a low-chronic exposure, each of which might have significant and varying effects on development.

12.
Anesthesiology ; 117(5): 1080-90, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23001052

RESUMEN

BACKGROUND: Propofol in the early postnatal period has been shown to cause brain cell death. One proposed mechanism for cognitive dysfunction after anesthesia is alteration of neural stem cell function and neurogenesis. We examined the effect of propofol on neural precursor or stem cells (NPCs) grown in vitro. METHODS: Hippocampal-derived NPCs from postnatal day 2 rats were exposed to propofol or Diprivan. NPCs were then analyzed for bromodeoxyuridine incorporation to measure proliferation. Cell death was measured by lactate dehydrogenase release. Immunocytochemistry was used to evaluate the expression of neuronal and glial markers in differentiating NPCs exposed to propofol. RESULTS: Propofol dose dependently increases the release of lactate dehydrogenase from NPCs under both proliferating and differentiating conditions at supraclinical concentrations (more than 7.1 µM). Both Diprivan and propofol had the same effect on NPCs. Propofol-mediated release of lactate dehydrogenase is not inhibited by blocking the γ-aminobutyric acid type A receptor or extracellular calcium influx and is not mediated by caspase-3/7. Direct γ-aminobutyric acid type A receptor activation did not have the same effect. In differentiating NPCs, 6 h of propofol at 2.1 µM increased the number neurons but not glial cells 4 days later. Increased neuronal differentiation was not blocked by bicuculline. CONCLUSIONS: Only supraclinical concentrations of propofol or Diprivan kill NPCs in culture by a non-γ-aminobutyric acid type A, noncaspase-3 mechanism. Clinically relevant doses of propofol increase neuronal fate choice by a non-γ-aminobutyric acid type A mechanism.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neuronas/citología , Propofol/farmacología , Animales , Animales Recién Nacidos , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hipocampo/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Propofol/toxicidad , Ratas , Ratas Sprague-Dawley
13.
Anesthesiology ; 116(3): 586-602, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22354242

RESUMEN

BACKGROUND: Anesthesia given to immature rodents causes cognitive decline, raising the possibility that the same might be true for millions of children undergoing surgical procedures under general anesthesia each year. We tested the hypothesis that anesthesia-induced cognitive decline in rats is treatable. We also tested if anesthesia-induced cognitive decline is aggravated by tissue injury. METHODS: Seven-day old rats underwent sevoflurane anesthesia (1 minimum alveolar concentration, 4 h) with or without tail clamping. At 4 weeks, rats were randomized to environmental enrichment or normal housing. At 8 weeks rats underwent neurocognitive testing, which consisted of fear conditioning, spatial reference memory, and water maze-based memory consolidation tests, and interrogated working memory, short-term memory, and early long-term memory. RESULTS: Sevoflurane-treated rats had a greater escape latency when the delay between memory acquisition and memory retrieval was increased from 1 min to 1 h, indicating that short-term memory was impaired. Delayed environmental enrichment reversed the effects of sevoflurane on short-term memory and generally improved many tested aspects of cognitive function, both in sevoflurane-treated and control animals. The performance of tail-clamped rats did not differ from those rats receiving anesthesia alone. CONCLUSION: Sevoflurane-induced cognitive decline in rats is treatable. Delayed environmental enrichment rescued the sevoflurane-induced impairment in short-term memory. Tissue injury did not worsen the anesthesia-induced memory impairment. These findings may have relevance to neonatal and pediatric anesthesia.


Asunto(s)
Vivienda para Animales , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/terapia , Éteres Metílicos/toxicidad , Factores de Edad , Animales , Animales Recién Nacidos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sevoflurano , Factores de Tiempo
14.
J Neurosurg Anesthesiol ; 34(4): 429-436, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34127616

RESUMEN

BACKGROUND: Volatile anesthetic exposure during development leads to long-term cognitive deficits in rats which are dependent on age and sex. Female rats are protected relative to male rats for the same exposure on postnatal day 7. Here we test our hypothesis that androgens can modulate chloride cotransporter expression to alter the susceptibility to neurotoxicity from GABAergic drugs using female rats with exogenous testosterone exposure. METHODS: Female rats were injected with testosterone (100 µg/animal) or vehicle on postnatal days 1 to 6. On postnatal day 7, the animals were randomized to either isoflurane exposure or sham. Spatial memory was assessed with the Barnes maze starting on postnatal day 41. Western blots were run from testosterone treated postnatal day 7 animals to measure levels of chloride cotransporters sodium-potassium-chloride symporter (NKCC1) and chloride-potassium symporter 5 (KCC2). RESULTS: Exogenous testosterone modulated isoflurane anesthetic neurotoxicity in female rats based on poor performance in the probe trial of the Barnes Maze. By contrast, females with vehicle and isoflurane exposure were able to differentiate the goal position. These behavioral differences corresponded to differences in the protein levels of NKCC1 and KCC2 after exogenous testosterone exposure, with NKCC1 increasing ( P <0.001) and KCC2 decreasing ( P =0.003) relative to female controls. CONCLUSIONS: The expression of chloride cotransporters, NKCC1 and KCC2, is altered by testosterone in female rats and corresponds to a cognitive deficit after isoflurane exposure. This confirms the role of androgens in perinatal anesthetic neurotoxicity and supports our hypothesis that the developing GABAergic system plays a critical role in the underlying mechanism.


Asunto(s)
Anestésicos , Isoflurano , Simportadores , Animales , Femenino , Masculino , Embarazo , Ratas , Andrógenos , Animales Recién Nacidos , Cloruros , Isoflurano/toxicidad , Ratas Sprague-Dawley , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Testosterona
15.
Anesthesiology ; 125(6): 1090-1091, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27655217
16.
J Neurosurg Anesthesiol ; 33(3): 273-280, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503065

RESUMEN

BACKGROUND: Preclinical investigations of the effects of general anesthesia on the young brain show differences in vulnerability of males and females to anesthetic exposure at different times during development. However, the mechanism underlying this sex difference is poorly understood. Perinatal testosterone is the primary determinant of sexual differentiation and likely plays an important role in defining the period of susceptibility to anesthetic injury. We investigated whether the removal of testosterone through gonadectomy shortly after birth would improve cognitive outcomes in male rodents after early anesthesia exposure. METHODS: Male Sprague Dawley rats underwent gonadectomy at postnatal day 2 (P2), followed by exposure to 6 hours of isoflurane at P7. A control cohort of gonad-intact male littermates was simultaneously exposed. All rats were subjected to a series of object recognition and association tasks beginning at P42. Cell death in the thalamus and hippocampus was assessed in a separate cohort. RESULTS: All groups performed similarly on the Novel Object Recognition task; however, the gonad-intact isoflurane group exhibited decreased performance in the more difficult tasks. This deficit was ameliorated in the gonadectomized group. Cell death was similar between both isoflurane-exposed groups, regardless of gonadectomy. CONCLUSIONS: The absence of testosterone does not block cell death after anesthesia in specific brain regions of interest; however, does provide some neuroprotection as evidenced by the improved cognitive test performance during adulthood. These findings suggest that testosterone may be mechanistically involved in the sex-specific effects of anesthetic injury on the developing brain by extending the vulnerable period in male rats.


Asunto(s)
Anestesia , Anestésicos , Isoflurano , Animales , Femenino , Hipocampo , Isoflurano/efectos adversos , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley
17.
Neurobiol Dis ; 38(2): 259-65, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20117210

RESUMEN

The hippocampus is often injured in neonatal stroke. We have investigated the effect of erythropoietin (EPO) on oxygen-glucose deprived hippocampal slices and hypoxic progenitor cells. EPO improved survival of the organotypic hippocampal slices with significantly less cell death in the dentate gyrus and an increased number of proliferating cells 4-5 days after insult. Significantly fewer markers of neurogenesis were seen after the insult but when EPO was added to the culture medium, neurogenesis was sustained. When hippocampal progenitor cultures were stimulated into differentiation, more cells chose a neuronal cell fate when treated with EPO. These findings support the hypothesis that EPO not only prevents ischemia induced cell death but promotes neuronal cell fate commitment in in vitro models of neonatal stroke.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Eritropoyetina/farmacología , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Análisis de Varianza , Animales , Western Blotting , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Eritropoyetina/metabolismo , Glucosa/deficiencia , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Receptores de Eritropoyetina/metabolismo , Células Madre
18.
Anesthesiology ; 112(2): 305-15, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20098132

RESUMEN

BACKGROUND: Roughly, 10% of elderly patients develop postoperative cognitive dysfunction. General anesthesia impairs spatial memory in aged rats, but the mechanism is not known. Hippocampal neurogenesis affects spatial learning and memory in rats, and isoflurane affects neurogenesis in neonatal and young adult rats. We tested the hypothesis that isoflurane impairs neurogenesis and hippocampal function in aged rats. METHODS: Isoflurane was administered to 16-month-old rats at one minimum alveolar concentration for 4 h. FluoroJade staining was performed to assess brain cell death 16 h after isoflurane administration. Dentate gyrus progenitor proliferation was assessed by bromodeoxyuridine injection 4 days after anesthesia and quantification of bromodeoxyuridine+ cells 12 h later. Neuronal differentiation was studied by determining colocalization of bromodeoxyuridine with the immature neuronal marker NeuroD 5 days after anesthesia. New neuronal survival was assessed by quantifying cells coexpressing bromodeoxyuridine and the mature neuronal marker NeuN 5 weeks after anesthesia. Four months after anesthesia, associative learning was assessed by fear conditioning. Spatial reference memory acquisition and retention was tested in the Morris Water Maze. RESULTS: Cell death was sporadic and not different between groups. We did not detect any differences in hippocampal progenitor proliferation, neuronal differentiation, new neuronal survival, or in any of the tests of long-term hippocampal function. CONCLUSION: In aged rats, isoflurane does not affect brain cell death, hippocampal neurogenesis, or long-term neurocognitive outcome.


Asunto(s)
Anestésicos por Inhalación/farmacología , Encéfalo/patología , Muerte Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Isoflurano/farmacología , Neuronas/fisiología , Envejecimiento/fisiología , Envejecimiento/psicología , Algoritmos , Anestésicos por Inhalación/toxicidad , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/psicología , Condicionamiento Psicológico/efectos de los fármacos , Miedo/efectos de los fármacos , Miedo/psicología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Isoflurano/toxicidad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Resultado del Tratamiento
19.
Anesth Analg ; 110(2): 431-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19917621

RESUMEN

Anesthetic drugs cause brain cell death and long-term neurocognitive dysfunction in neonatal rats. Recently, human data also suggest that anesthesia early in life may cause cognitive impairment. The connection between cell death and neurocognitive decline is uncertain. It is conceivable that mechanisms other than brain cell death contribute to neurocognitive outcome of neonatal anesthesia. In a series of experiments, we demonstrate that isoflurane exposure causes significant hypercarbia in postnatal day 7 rats and that exposure to isoflurane or carbon dioxide for 4 h provoked brain cell death. However, 1 h of isoflurane exposure was not sufficient to cause brain cell death. Moreover, only 4 h of isoflurane exposure, but not 1 or 2 h of exposure or 4 h of carbon dioxide, led to impaired hippocampal function,questioning the association between anesthesia-induced brain cell death and neurocognitive dysfunction. Neurogenesis both in the developing and adult dentate gyrus is important for hippocampal function, specifically learning and memory. γ-Amino-butyric-acid regulates proliferation and neuronal differentiation both in the developing and the adult brain. Inhaled anesthetics are γ-amino-butyric-acid-ergic and may therefore affect neurogenesis, which could be an alternative mechanism mediating anesthesia-induced neurocognitive decline in immature rats. Understanding the mechanism will help guide clinical trials aiming to define the scope of the problem in humans and may lead to preventive and therapeutic strategies.


Asunto(s)
Anestésicos por Inhalación/farmacología , Encéfalo/patología , Muerte Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Isoflurano/farmacología , Enfermedades del Sistema Nervioso/inducido químicamente , Enfermedades del Sistema Nervioso/patología , Neurogénesis/efectos de los fármacos , Anestésicos por Inhalación/toxicidad , Animales , Humanos , Isoflurano/toxicidad , Ratas
20.
Anesth Analg ; 110(2): 431-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25508825

RESUMEN

Anesthetic drugs cause brain cell death and long-term neurocognitive dysfunction in neonatal rats. Recently, human data also suggest that anesthesia early in life may cause cognitive impairment. The connection between cell death and neurocognitive decline is uncertain. It is conceivable that mechanisms other than brain cell death contribute to neurocognitive outcome of neonatal anesthesia. In a series of experiments, we demonstrate that isoflurane exposure causes significant hypercarbia in postnatal day 7 rats and that exposure to isoflurane or carbon dioxide for 4 h provoked brain cell death. However, 1 h of isoflurane exposure was not sufficient to cause brain cell death. Moreover, only 4 h of isoflurane exposure, but not 1 or 2 h of exposure or 4 h of carbon dioxide, led to impaired hippocampal function,questioning the association between anesthesia-induced brain cell death and neurocognitive dysfunction. Neurogenesis both in the developing and adult dentate gyrus is important for hippocampal function, specifically learning and memory. γ-Amino-butyric-acid regulates proliferation and neuronal differentiation both in the developing and the adult brain. Inhaled anesthetics are γ-amino-butyric-acid-ergic and may therefore affect neurogenesis, which could be an alternative mechanism mediating anesthesia-induced neurocognitive decline in immature rats. Understanding the mechanism will help guide clinical trials aiming to define the scope of the problem in humans and may lead to preventive and therapeutic strategies.


Asunto(s)
Anestésicos por Inhalación/farmacología , Encéfalo/citología , Cognición/efectos de los fármacos , Isoflurano/farmacología , Enfermedades del Sistema Nervioso/inducido químicamente , Enfermedades del Sistema Nervioso/fisiopatología , Neurogénesis/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Humanos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA