Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 229(5): 2780-2794, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33124063

RESUMEN

Lignin is a key target for modifying lignocellulosic biomass for efficient biofuel production. Brown midrib 12 (bmr12) encodes the sorghum caffeic acid O-methyltransferase (COMT) and is one of the key enzymes in monolignol biosynthesis. Loss of function mutations in COMT reduces syringyl (S) lignin subunits and improves biofuel conversion rate. Although lignin plays an important role in maintaining cell wall integrity of xylem vessels, physiological and molecular consequences due to loss of COMT on root growth and adaptation to water deficit remain unexplored. We addressed this gap by evaluating the root morphology, anatomy and transcriptome of bmr12 mutant. The mutant had reduced lateral root density (LRD) and altered root anatomy and response to water limitation. The wild-type exhibits similar phenotypes under water stress, suggesting that bmr12 may be in a water deficit responsive state even in well-watered conditions. bmr12 had increased transcript abundance of genes involved in (a)biotic stress response, gibberellic acid (GA) biosynthesis and signaling. We show that bmr12 is more sensitive to exogenous GA application and present evidence for the role of GA in regulating reduced LRD in bmr12. These findings elucidate the phenotypic and molecular consequences of COMT deficiency under optimal and water stress environments in grasses.


Asunto(s)
Metiltransferasas , Raíces de Plantas/crecimiento & desarrollo , Sorghum , Lignina , Metiltransferasas/genética , Sorghum/genética , Agua
2.
PLoS One ; 10(6): e0128297, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26066332

RESUMEN

Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA)-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS), the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection) and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4-62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in several BC2F1 plants. Thus, in addition to PM resistance, these progeny might also carry resistance to stem rust race Ug99.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Marcadores Genéticos/genética , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Cromosomas de las Plantas , Genotipo , Meiosis , Repeticiones de Microsatélite , Fenotipo , Proteínas de Plantas/genética , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA