Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 55(8): 1370-1385.e8, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835107

RESUMEN

Mitochondrial DNA (mtDNA) escaping stressed mitochondria provokes inflammation via cGAS-STING pathway activation and, when oxidized (Ox-mtDNA), it binds cytosolic NLRP3, thereby triggering inflammasome activation. However, it is unknown how and in which form Ox-mtDNA exits stressed mitochondria in non-apoptotic macrophages. We found that diverse NLRP3 inflammasome activators rapidly stimulated uniporter-mediated calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger VDAC oligomerization. This occurred independently of mtDNA or reactive oxygen species, which induce Ox-mtDNA generation. Within mitochondria, Ox-mtDNA was either repaired by DNA glycosylase OGG1 or cleaved by the endonuclease FEN1 to 500-650 bp fragments that exited mitochondria via mPTP- and VDAC-dependent channels to initiate cytosolic NLRP3 inflammasome activation. Ox-mtDNA fragments also activated cGAS-STING signaling and gave rise to pro-inflammatory extracellular DNA. Understanding this process will advance the development of potential treatments for chronic inflammatory diseases, exemplified by FEN1 inhibitors that suppressed interleukin-1ß (IL-1ß) production and mtDNA release in mice.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , ADN Mitocondrial/metabolismo , Inflamasomas/metabolismo , Interferones/metabolismo , Ratones , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nucleotidiltransferasas/metabolismo
2.
Am J Physiol Endocrinol Metab ; 325(5): E624-E637, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792040

RESUMEN

Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose.NEW & NOTEWORTHY This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.


Asunto(s)
Actomiosina , Temperatura Corporal , Ratones , Masculino , Femenino , Animales , Actomiosina/metabolismo , Termogénesis/genética , Hígado/metabolismo , Frío , Tejido Adiposo Pardo/metabolismo , Aminoácidos/metabolismo , Ratones Endogámicos C57BL
3.
FASEB J ; 36(9): e22513, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36004605

RESUMEN

Regulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown. However, vitamin A status and intake of its carotenoid precursor ß-carotene have been linked to the prevention of heart diseases. Here, we provide in vitro and in vivo evidence that retinoic acid regulates cardiac Pdk4 expression and thus PDH activity. Furthermore, we show that mice lacking ß-carotene 9',10'-oxygenase (BCO2), the only enzyme of the adult heart that cleaves ß-carotene to generate retinoids (vitamin A and its derivatives), displayed cardiac retinoic acid insufficiency and impaired metabolic flexibility linked to a compromised PDK4/PDH pathway. These findings provide novel insights into the functions of retinoic acid in regulating energy metabolism in adult tissues, especially the heart.


Asunto(s)
Dioxigenasas , beta Caroteno , Animales , Dioxigenasas/metabolismo , Ratones , Ratones Noqueados , Oxigenasas , Proteínas Quinasas , Complejo Piruvato Deshidrogenasa/metabolismo , Tretinoina , Vitamina A
4.
J Lipid Res ; 62: 100046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33587919

RESUMEN

Lecithin:retinol acyltransferase and retinol-binding protein enable vitamin A (VA) storage and transport, respectively, maintaining tissue homeostasis of retinoids (VA derivatives). The precarious VA status of the lecithin:retinol acyltransferase-deficient (Lrat-/-) retinol-binding protein-deficient (Rbp-/-) mice rapidly deteriorates upon dietary VA restriction, leading to signs of severe vitamin A deficiency (VAD). As retinoids impact gut morphology and functions, VAD is often linked to intestinal pathological conditions and microbial dysbiosis. Thus, we investigated the contribution of VA storage and transport to intestinal retinoid homeostasis and functionalities. We showed the occurrence of intestinal VAD in Lrat-/-Rbp-/- mice, demonstrating the critical role of both pathways in preserving gut retinoid homeostasis. Moreover, in the mutant colon, VAD resulted in a compromised intestinal barrier as manifested by reduced mucins and antimicrobial defense, leaky gut, increased inflammation and oxidative stress, and altered mucosal immunocytokine profiles. These perturbations were accompanied by fecal dysbiosis, revealing that the VA status (sufficient vs. deficient), rather than the amount of dietary VA per se, is likely a major initial discriminant of the intestinal microbiome. Our data also pointed to a specific fecal taxonomic profile and distinct microbial functionalities associated with VAD. Overall, our findings revealed the suitability of the Lrat-/-Rbp-/- mice as a model to study intestinal dysfunctions and dysbiosis promoted by changes in tissue retinoid homeostasis induced by the host VA status and/or intake.


Asunto(s)
Vitamina A
5.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503804

RESUMEN

Cells sustain constant oxidative stress from both exogenous and endogenous sources. When unmitigated by antioxidant defenses, reactive oxygen species damage cellular macromolecules, including DNA. Oxidative lesions in both nuclear and mitochondrial DNA are repaired via the base excision repair (BER) pathway, initiated by DNA glycosylases. We have previously demonstrated that the BER glycosylase 8-oxoguanine DNA glycosylase (OGG1) plays a novel role in body weight maintenance and regulation of adiposity. Specifically, mice lacking OGG1 (Ogg1-/-) are prone to increased fat accumulation with age and consumption of hypercaloric diets. Conversely, transgenic animals with mitochondrially-targeted overexpression of OGG1 (Ogg1Tg) are resistant to age- and diet-induced obesity. Given these phenotypes of altered adiposity in the context of OGG1 genotype, we sought to determine if OGG1 plays a cell-intrinsic role in adipocyte maturation and lipid accumulation. Here, we report that preadipocytes from Ogg1-/- mice differentiate more efficiently and accumulate more lipids than those from wild-type animals. Conversely, OGG1 overexpression significantly blunts adipogenic differentiation and lipid accretion in both pre-adipocytes from Ogg1Tg mice, as well as in 3T3-L1 cells with adenovirus-mediated OGG1 overexpression. Mechanistically, changes in adipogenesis are accompanied by significant alterations in cellular PARylation, corresponding with OGG1 genotype. Specifically, deletion of OGG1 reduces protein PARylation, concomitant with increased adipogenic differentiation, while OGG1 overexpression significantly increases PARylation and blunts adipogenesis. Collectively, these data indicate a novel role for OGG1 in modulating adipocyte differentiation and lipid accretion. These findings have important implications to our knowledge of the fundamental process of adipocyte differentiation, as well as to our understanding of lipid-related diseases such as obesity.


Asunto(s)
Adipogénesis , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Metabolismo de los Lípidos , Ratones , Especies Reactivas de Oxígeno/metabolismo
6.
PLoS Genet ; 11(2): e1004935, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25671638

RESUMEN

Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in common diseases.


Asunto(s)
Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Proopiomelanocortina/biosíntesis , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Secuencia Conservada , Femenino , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Ratones , Neuronas/metabolismo , Filogenia , Embarazo , Proopiomelanocortina/deficiencia , Proopiomelanocortina/genética
7.
J Biol Chem ; 289(5): 2482-8, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24356954

RESUMEN

The skin is the single largest organ in humans, serving as a major barrier to infection, water loss, and abrasion. The functional diversity of skin requires the synthesis of large amounts of lipids, such as triglycerides, wax esters, squalene, ceramides, free cholesterol, free fatty acids, and cholesterol and retinyl esters. Some of these lipids are used as cell membrane components, signaling molecules, and a source of energy. An important class of lipid metabolism enzymes expressed in skin is the Δ(9)-desaturases, which catalyze the synthesis in Δ(9)-monounsaturated lipids, primarily oleoyl-CoA (18:1n-9) and palmitoyl-CoA (16:1n-7), the major monounsaturated fatty acids in cutaneous lipids. Mice with a deletion of the Δ(9)-desaturase-1 isoform (SCD1) either globally (Scd1(-/-)) or specifically in the skin (skin-specific Scd1-knockout; SKO) present with marked changes in cutaneous lipids and skin integrity. Interestingly, these mice also exhibit increased whole body energy expenditure, protection against diet-induced adiposity, hepatic steatosis, and glucose intolerance. The increased energy expenditure in skin-specific Scd1-knockout (SKO) mice is a surprising phenotype, as it links cutaneous lipid homeostasis with whole body energy balance. This minireview summarizes the role of skin SCD1 in regulating skin integrity and whole body energy homeostasis and offers a discussion of potential pathways that may connect these seemingly disparate phenotypes.


Asunto(s)
Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Obesidad/metabolismo , Fenómenos Fisiológicos de la Piel , Estearoil-CoA Desaturasa/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Estearoil-CoA Desaturasa/genética
8.
DNA Repair (Amst) ; 134: 103628, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228016

RESUMEN

Oxidative stress-induced DNA base modifications, if unrepaired, can increase mutagenesis and genomic instability, ultimately leading to cell death. Cells predominantly use the base excision repair (BER) pathway to repair oxidatively-induced non-helix distorting lesions. BER is initiated by DNA glycosylases, such as 8-oxoguanine DNA glycosylase (OGG1), which repairs oxidatively modified guanine bases, including 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened formamidopyrimidine lesions, 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). The OGG1 protein contains a C2H2 zinc (Zn) finger DNA binding domain. However, the impact of dietary Zn deficiency on OGG1 catalytic activity has not been extensively studied. Zn is a common nutrient of concern with increasing age, and the prevalence of oxidative DNA damage is also concurrently increased during aging. Thus, understanding the potential regulation of OGG1 activity by Zn is clinically relevant. The present study investigates the impact of a range of Zn statuses, varying from severe Zn deficiency to exogenous Zn-supplementation, in the context of young and aged animals to determine the impact of dietary Zn-status on OGG1 activity and oxidative DNA damage in mice. Our findings suggest that nutritional Zn deficiency impairs OGG1 activity and function, without altering gene expression, and that aging further exacerbates these effects. These results have important implications for nutritional management of Zn during aging to mitigate age-associated DNA damage.


Asunto(s)
ADN Glicosilasas , Reparación del ADN , Animales , Ratones , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/metabolismo , Estrés Oxidativo , Zinc
9.
Microorganisms ; 12(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930571

RESUMEN

Different modifications of the standard bread recipe have been proposed to improve its nutritional and health benefits. Here, we utilized the in vitro Human Gut Simulator (HGS) to assess the fermentation of one such artisan bread by human gut microbiota. Dried and milled bread, composed of almond flour, psyllium husks, and flax seeds as its three main ingredients, was first subjected to an in vitro protocol designed to mimic human oro-gastro-intestinal digestion. The bread digest was then supplied to complex human gut microbial communities, replacing the typical Western diet-based medium (WM) of the GHS system. Switching the medium from WM to bread digest resulted in statistically significant alterations in the community structure, encoded functions, produced short-chain fatty acids, and available antioxidants. The abundances of dietary fiber degraders Enterocloster, Mitsuokella, and Prevotella increased; levels of Gemmiger, Faecalibacterium, and Blautia decreased. These community alterations resembled the previously revealed differences in the distal gut microbiota of healthy human subjects consuming typical Mediterranean vs. Western-pattern diets. Therefore, the consumption of bread high in dietary fiber and unsaturated fatty acids might recapitulate the beneficial effects of the Mediterranean diet on the gut microbiota.

10.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260602

RESUMEN

Background and Aims: Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid esterification and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. Methods: To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, metabolic phenotyping including body composition, indirect calorimetry, glucose tolerance analyses, and assessment of bile acid signaling pathways. Results: iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt . These increases were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. Conclusion: Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid metabolism and whole-body energy balance, likely via activation of TGR5.

11.
Arch Biochem Biophys ; 532(1): 23-31, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23357280

RESUMEN

We previously showed that knockdown of the anaplerotic enzyme pyruvate carboxylase in the INS-1 832/13 insulinoma cell line inhibited glucose-stimulated insulin release and glucose carbon incorporation into lipids. We now show that knockdown of fatty acid synthase (FAS) mRNA and protein also inhibits glucose-stimulated insulin release in this cell line. Levels of numerous phospholipids, cholesterol esters, diacylglycerol, triglycerides and individual fatty acids with C14-C24 side chains were acutely lowered about 20% in glucose-stimulated pyruvate carboxylase knockdown cells over a time course that coincides with insulin secretion. In FAS knockdown cells glucose carbon incorporation into lipids and the levels of the subclasses of phospholipids and cholesterol ester species were lower by 20-30% without inhibition of glucose oxidation. These studies suggest that rapid lipid modification is essential for normal glucose-stimulated insulin secretion.


Asunto(s)
Ácido Graso Sintasas/genética , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Piruvato Carboxilasa/genética , Animales , Línea Celular Tumoral , Ácido Graso Sintasas/metabolismo , Técnicas de Silenciamiento del Gen , Insulinoma/metabolismo , Piruvato Carboxilasa/metabolismo , Ratas
12.
Animals (Basel) ; 13(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36899650

RESUMEN

Integrating warm-season grasses into cool-season equine grazing systems can increase pasture availability during summer months. The objective of this study was to evaluate effects of this management strategy on the fecal microbiome and relationships between fecal microbiota, forage nutrients, and metabolic responses of grazing horses. Fecal samples were collected from 8 mares after grazing cool-season pasture in spring, warm-season pasture in summer, and cool-season pasture in fall as well as after adaptation to standardized hay diets prior to spring grazing and at the end of the grazing season. Random forest classification was able to predict forage type based on microbial composition (accuracy: 0.90 ± 0.09); regression predicted forage crude protein (CP) and non-structural carbohydrate (NSC) concentrations (p < 0.0001). Akkermansia and Clostridium butyricum were enriched in horses grazing warm-season pasture and were positively correlated with CP and negatively with NSC; Clostridum butyricum was negatively correlated with peak plasma glucose concentrations following oral sugar tests (p ≤ 0.05). These results indicate that distinct shifts in the equine fecal microbiota occur in response different forages. Based on relationships identified between the microbiota, forage nutrients, and metabolic responses, further research should focus on the roles of Akkermansia spp. and Clostridium butyricum within the equine hindgut.

13.
Genes Brain Behav ; 22(4): e12849, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37328946

RESUMEN

Relationships between novel phenotypic behaviors and specific genetic alterations are often discovered using target-specific, directed mutagenesis or phenotypic selection following chemical mutagenesis. An alternative approach is to exploit deficiencies in DNA repair pathways that maintain genetic integrity in response to spontaneously induced damage. Mice deficient in the DNA glycosylase NEIL1 show elevated spontaneous mutations, which arise from translesion DNA synthesis past oxidatively induced base damage. Several litters of Neil1 knockout mice included animals that were distinguished by their backwards-walking behavior in open-field environments, while maintaining frantic forward movements in their home cage environment. Other phenotypic manifestations included swim test failures, head tilting and circling. Mapping of the mutation that conferred these behaviors showed the introduction of a stop codon at amino acid 4 of the Ush1g gene. Ush1gbw/bw null mice displayed auditory and vestibular defects that are commonly seen with mutations affecting inner-ear hair-cell function, including a complete lack of auditory brainstem responses and vestibular-evoked potentials. As in other Usher syndrome type I mutant mouse lines, hair cell phenotypes included disorganized and split hair bundles, as well as altered distribution of proteins for stereocilia that localize to the tips of row 1 or row 2. Disruption to the bundle and kinocilium displacement suggested that USH1G is essential for forming the hair cell's kinocilial links. Consistent with other Usher type 1 models, Ush1gbw/bw mice had no substantial retinal degeneration compared with Ush1gbw /+ controls. In contrast to previously described Ush1g alleles, this new allele provides the first knockout model for this gene.


Asunto(s)
ADN Glicosilasas , Síndromes de Usher , Ratones , Animales , Alelos , Síndromes de Usher/genética , Mutación , Fenotipo , ADN Glicosilasas/genética
14.
Cell Metab ; 6(6): 484-96, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18054317

RESUMEN

Stearoyl-CoA desaturase-1 (SCD1), a critical regulator of energy metabolism, catalyzes the synthesis of monounsaturated fats. To understand the tissue-specific role of SCD1 in energy homeostasis, we used Cre-lox technology to generate mice with a liver-specific knockout of Scd1 (LKO). LKO mice were protected from high-carbohydrate, but not high-fat (HF), diet-induced adiposity and hepatic steatosis. Additionally, on a high-sucrose, very low-fat (HSVLF) diet, lipogenesis and levels of nuclear SREBP-1 and ChREBP were significantly decreased in the livers of LKO relative to Scd1(lox/lox) (Lox) mice. HSVLF feeding in LKO mice caused hypoglycemia and hepatic carbohydrate reduction due to an impairment of gluconeogenesis. Oleate, but not stearate, supplementation normalized adiposity, gluconeogenesis, triglyceride secretion, and hepatic lipogenesis of LKO mice. These results indicate that hepatic SCD1 expression (and thus, oleate) is required for carbohydrate-induced adiposity, but SCD1 inhibition in extrahepatic tissues is required to protect mice from HF-induced obesity and insulin resistance.


Asunto(s)
Hígado Graso/prevención & control , Hígado/enzimología , Estearoil-CoA Desaturasa/deficiencia , Adiposidad , Animales , Secuencia de Bases , Metabolismo de los Hidratos de Carbono , Cartilla de ADN/genética , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Hígado Graso/enzimología , Hígado Graso/etiología , Hígado Graso/patología , Gluconeogénesis/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Sacarosa/administración & dosificación , Distribución Tisular
15.
Front Nutr ; 9: 987956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061902

RESUMEN

Background: 7,8-dihydroxyflavone (DHF) is a naturally occurring flavonoid found in Godmania, Tridax, and Primula species that confers protection against high-fat diet (HFD) induced metabolic pathologies selectively in female mice. We have previously reported that this metabolic protection is associated with early and stable remodeling of the intestinal microbiome, evident in female but not male DHF-supplemented mice. Early changes in the gut microbiome in female DHF-fed mice were highly predictive of subsequent metabolic protection, suggesting a causative association between the gut microbiome and the metabolic effects of DHF. Objective: To investigate a causal association between the gut microbiome and the metabolic effects of DHF using a model of antibiotic-induced gut microbiome ablation. Materials and methods: Age-matched male and female C57Bl6/J mice were given ad libitum access to HFD and drinking water containing vehicle or DHF for 12 weeks. For antibiotic (Abx) treatment, female mice were given drinking water containing a cocktail of antibiotics for 2 weeks prior to HFD feeding and throughout the feeding period. Metabolic phenotyping consisted of longitudinal assessments of body weights, body composition, food, and water intake, as well as measurement of energy expenditure, glucose tolerance, and plasma and hepatic lipids. Protein markers mediating the cellular effects of DHF were assessed in brown adipose tissue (BAT) and skeletal muscle. Results: Metabolic protection conferred by DHF in female HFD-fed mice was only apparent in the presence of an intact gut microbiome. Abx-treated mice were not protected from HFD-induced obesity by DHF administration. Further, tissue activation of the tropomyosin-related kinase receptor B (TrkB) receptor, which has been attributed to the biological activity of DHF, was lost upon gut microbiome ablation, indicating a requirement for microbial "activation" of DHF for its systemic effects. In addition, we report for the first time that DHF supplementation significantly activates TrkB in BAT of female, but not male, mice uncovering a novel target tissue of DHF. DHF supplementation also increased uncoupling protein 1 (UCP1) and AMP-activated protein kinase (AMPK) protein in BAT, consistent with protection from diet-induced obesity. Conclusion: These results establish for the first time a requirement for the gut microbiome in mediating the metabolic effects of DHF in female mice and uncover a novel target tissue that may mediate these sexually-dimorphic protective effects.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35718096

RESUMEN

Stearoyl-CoA desaturase-1 is an endoplasmic reticulum (ER)-membrane resident protein that inserts a double bond into saturated fatty acids, converting them into their monounsaturated counterparts. Previous studies have demonstrated an important role for SCD1 in modulating tissue and systemic health. Specifically, lack of hepatic or cutaneous SCD1 results in significant reductions in tissue esterified lipids. While the intestine is an important site of lipid esterification and assimilation into the body, the regulation of intestinal SCD1 or its impact on lipid composition in the intestine and other tissues has not been investigated. Here we report that unlike other lipogenic enzymes, SCD1 is enriched in the distal small intestine and in the colon of chow-fed mice and is robustly upregulated by acute refeeding of a high-sucrose diet. We generated a mouse model lacking SCD1 specifically in the intestine (iKO mice). These mice have significant reductions not only in intestinal lipids, but also in plasma triacylglycerols, diacylglycerols, cholesterol esters, and free cholesterol. Additionally, hepatic accumulation of diacylglycerols is significantly reduced in iKO mice. Comprehensive targeted lipidomic profiling revealed a consistent reduction in the myristoleic (14:1) to myristic (14:0) acid ratios in intestine, liver, and plasma of iKO mice. Consistent with the reduction of the monounsaturated fatty acid myristoleic acid in hepatic lipids of chow fed iKO mice, hepatic expression of Pgc-1α, Sirt1, and related fatty acid oxidation genes were reduced in chow-fed iKO mice. Further, lack of intestinal SCD1 reduced expression of de novo lipogenic genes in distal intestine of chow-fed mice and in the livers of mice fed a lipogenic high-sucrose diet. Taken together, these studies reveal a novel pattern of expression of SCD1 in the intestine. They also demonstrate that intestinal SCD1 modulates lipid content and composition of not only intestinal tissues, but also that of plasma and liver. Further, these data point to intestinal SCD1 as a modulator of gut-liver crosstalk, potentially through the production of novel signaling lipids such as myristoleic acid. These data have important implications to understanding how intestinal SCD1 may modulate risk for post-prandial lipemia, hepatic steatosis, and related pathologies.


Asunto(s)
Diglicéridos , Estearoil-CoA Desaturasa , Animales , Diglicéridos/metabolismo , Homeostasis , Intestinos , Hígado/metabolismo , Ratones , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Sacarosa/metabolismo
17.
Nutrients ; 14(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35565729

RESUMEN

Intestinal fatty acid-binding protein (IFABP; FABP2) and liver fatty acid-binding protein (LFABP; FABP1) are small intracellular lipid-binding proteins. Deficiency of either of these proteins in mice leads to differential changes in intestinal lipid transport and metabolism, and to markedly divergent changes in whole-body energy homeostasis. The gut microbiota has been reported to play a pivotal role in metabolic process in the host and can be affected by host genetic factors. Here, we examined the phenotypes of wild-type (WT), LFABP-/-, and IFABP-/- mice before and after high-fat diet (HFD) feeding and applied 16S rRNA gene V4 sequencing to explore guild-level changes in the gut microbiota and their associations with the phenotypes. The results show that, compared with WT and IFABP-/- mice, LFABP-/- mice gained more weight, had longer intestinal transit time, less fecal output, and more guilds containing bacteria associated with obesity, such as members in family Desulfovibrionaceae. By contrast, IFABP-/- mice gained the least weight, had the shortest intestinal transit time, the most fecal output, and the highest abundance of potentially beneficial guilds such as those including members from Akkermansia, Lactobacillus, and Bifidobacterium. Twelve out of the eighteen genotype-related bacterial guilds were associated with body weight. Interestingly, compared with WT mice, the levels of short-chain fatty acids in feces were significantly higher in LFABP-/- and IFABP-/- mice under both diets. Collectively, these studies show that the ablation of LFABP or IFABP induced marked changes in the gut microbiota, and these were associated with HFD-induced phenotypic changes in these mice.


Asunto(s)
Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
18.
Am J Physiol Endocrinol Metab ; 300(4): E724-34, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21285402

RESUMEN

Exposure to chronic and acute oxidative stress is correlated with many human diseases, including, but not limited to, cancer, heart disease, diabetes, and obesity. In addition to cellular lipids and proteins, cellular oxidative stress can result in damage to DNA bases, especially in mitochondrial DNA. We previously described the development of spontaneous late-onset obesity, hepatic steatosis, hyperinsulinemia, and hyperleptinemia in mice that are deficient in the DNA glycosylase nei-like 1 (NEIL1), which initiates base excision repair of several oxidatively damaged bases. In the current study, we report that exposure to a chronic oxidative stress in the form of a high-fat diet greatly accelerates the development of obesity in neil1(-/-) mice. Following a 5-wk high-fat diet challenge, neil1(-/-) mice gained significantly more body weight than neil1(+/+) littermates and had increased body fat accumulation and moderate to severe hepatic steatosis. Analysis of oxygen consumption by indirect calorimetry indicated a modest reduction in total oxygen consumption in neil1(-/-) mice that was abolished upon correction for lean body mass. Additionally, hepatic expression of several inflammatory genes was significantly upregulated in neil1(-/-) mice following high-fat diet challenge compared with chow-fed or neil1(+/+) counterparts. A long-term high-fat diet also induced glucose intolerance as well as a significant reduction in mitochondrial DNA and protein content in neil1(-/-) mice. Collectively, these data indicate that NEIL1 deficiency results in an increased susceptibility to obesity and related complications potentially by lowering the threshold for tolerance of cellular oxidative stress in neil1(-/-) mice.


Asunto(s)
Adiposidad , ADN Glicosilasas/genética , Obesidad/genética , Obesidad/metabolismo , Penetrancia , Adiposidad/efectos de los fármacos , Adiposidad/genética , Animales , Dieta Aterogénica , Grasas de la Dieta/efectos adversos , Femenino , Predisposición Genética a la Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/epidemiología , Obesidad/etiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Fenotipo , Prevalencia , Estudios de Validación como Asunto
19.
Arterioscler Thromb Vasc Biol ; 30(1): 31-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19910642

RESUMEN

BACKGROUND AND PURPOSE: Adipose inflammation is crucial to the pathogenesis of metabolic disorders. This study aimed at identify the effects of stearoyl-CoA desaturase-1 (SCD1) on the inflammatory response of a paracrine network involving adipocytes, macrophages, and endothelial cells. METHODS AND RESULTS: Loss of SCD1 in both genetic (Agouti) and diet-induced obesity (high-fat diet) mouse models prevented inflammation in white adipose tissue and improved its basal insulin signaling. In SCD1-deficient mice, white adipose tissue exhibited lower inflammation, with a reduced response to lipopolysaccharide in isolated adipocytes, but not in peritoneal macrophages. Mimicking the in vivo paracrine regulation of white adipose tissue inflammation, SCD1-deficient adipocyte-conditioned medium attenuated the induction of tumor necrosis factor (TNF) alpha/interleukin 1beta gene expression in RAW264.7 macrophages and reduced the adhesion response in endothelial cells. We further demonstrated that the adipocyte-derived oleate (18:1n9), but not palmitoleate (16:1n7), mediated the inflammation in macrophages and adhesion responses in endothelial cells. CONCLUSIONS: Loss of SCD1 attenuates adipocyte inflammation and its paracrine regulation of inflammation in macrophages and endothelial cells. The reduced oleate level is linked to the inflammation-modulating effects of SCD1 deficiency.


Asunto(s)
Adipocitos Blancos/inmunología , Inflamación/inmunología , Ácido Oléico/inmunología , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/inmunología , Adipocitos Blancos/citología , Adipocitos Blancos/metabolismo , Animales , Adhesión Celular/inmunología , Línea Celular , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/citología , Células Endoteliales/inmunología , Ácidos Grasos Monoinsaturados/inmunología , Ácidos Grasos Monoinsaturados/metabolismo , Inflamación/metabolismo , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Obesidad/inmunología , Ácido Oléico/metabolismo , Comunicación Paracrina/inmunología , Transducción de Señal/inmunología , Estearoil-CoA Desaturasa/metabolismo , Células del Estroma/citología , Células del Estroma/inmunología
20.
Artículo en Inglés | MEDLINE | ID: mdl-32976987

RESUMEN

Combined exposure to dietary nutrients and environmental chemicals may elicit significantly different physiological effects than single exposures. Exposure to dietary saturated fats and environmental toxins is a physiologically-significant dual exposure that is particularly associated with lower socioeconomic status, potentially placing these individuals at heightened risk of xenobiotic toxicities. However, no prior studies have examined interactions between specific lipids and environmental xenobiotics in modulating cellular health. Using primary mouse embryonic fibroblasts, we have discovered that prior exposure to the saturated fatty acid, palmitate, exacerbates cellular toxicity associated with the industrial plasticizer, bisphenol A (BPA). Cell death upon BPA exposure following palmitate pre-treatment was greater than that occurring with either exposure alone. Mechanistically, cell death was preceded by increased endoplasmic reticulum stress and loss of mitochondrial membrane potential in palmitate plus BPA exposed cells, leading to increased caspase-3 cleavage and subsequent apoptosis. Interestingly, inclusion of the unsaturated fatty acid, oleate, along with palmitate during the pre-treatment period completely abrogated the ER stress, mitochondrial toxicity, and cell death induced by subsequent exposure to BPA. Thus, our data identify for the first time an important interaction between a fatty acid and an environmental toxin and have implications for developing nutritional interventions to mitigate the deleterious effects of such xenobiotic exposures.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Ácido Palmítico/farmacología , Fenoles/farmacología , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Embrión de Mamíferos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Ácido Oléico/farmacología , Cultivo Primario de Células , Albúmina Sérica Bovina/farmacología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA