Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 94(Pt B): 565-576, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26493227

RESUMEN

Percomorphs are a large and diverse group of spiny-finned fishes that have come to be known as the "bush at the top" due to their persistent lack of phylogenetic resolution. Recently, the broader Euteleost Tree of Life project (EToL) inferred a well-supported phylogenetic hypothesis that groups the diversity of percomorphs into nine well-supported series (supraordinal groups): Ophidiaria, Batrachoidaria, Gobiaria, Syngnatharia, Pelagiaria, Anabantaria, Carangaria, Ovalentaria, and Eupercaria. The EToL also provided, for the first time, a monophyletic definition of Perciformes - the largest order of vertebrates. Despite significant progress made in accommodating the diversity of percomorph taxa into major clades, some 62 families (most previously placed in "Perciformes", as traditionally defined) were not examined by the EToL. Here, we provide evidence for the phylogenetic affinities of 10 of those 62 families, seven of which have largely remained enigmatic. This expanded taxonomic sampling also provides further support for the nine EToL supraordinal series. We examined sequences from 21 genes previously used by the EToL and added two fast-evolving mitochondrial markers in an attempt to increase resolution within the rapid percomorph radiations. We restricted the taxonomic sampling to 1229 percomorph species, including expanded sampling from recent studies. Results of maximum likelihood analysis revealed that bathyclupeids (Bathyclupeidae), galjoen fishes (Dichistiidae), kelpfishes (Chironemidae), marblefishes (Aplodactylidae), trumpeters (Latridae), barbeled grunters (Hapalogenyidae), slopefishes (Symphysanodontidae), and picarel porgies (formerly Centracanthidae) are members of the series Eupercaria ("new bush at the top"). The picarel porgies and porgies (Sparidae) are now placed in the same family (Sparidae). Our analyses suggest a close affinity between the orders Spariformes (including Lethrinidae, Nemipteridae and Sparidae) and Lobotiformes (including the tripletails or Lobotidae, the barbeled grunters, and tigerperches or Datnioididae), albeit support for this group is low. None of the newly examined families belong in the order Perciformes, as recently defined. Finally, we confirm results from other recent studies that place the Australasian salmons (Arripidae) within Pelagiaria, and the false trevallies (Lactariidae) close to flatfishes, jacks, and trevallies, within Carangaria.


Asunto(s)
Peces/clasificación , Animales , Peces/genética , Perciformes/clasificación , Perciformes/genética , Filogenia
2.
Plant Genome ; 14(3): e20159, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34661986

RESUMEN

High winter mortality limits biomass yield of lowland switchgrass (Panicum virgatum L.) planted in the northern latitudes of North America. Breeding of cold tolerant switchgrass cultivars requires many years due to its perennial growth habit and the unpredictable winter selection pressure that is required to identify winter-hardy individuals. Identification of causal genetic variants for winter survivorship would accelerate the improvement of switchgrass biomass production. The objective of this study was to identify allelic variation associated with winter survivorship in lowland switchgrass populations using bulk segregant analysis (BSA). Twenty-nine lowland switchgrass populations were evaluated for winter survival at two locations in southern Wisconsin and 21 populations with differential winter survivorship were used for BSA. A maximum of 10% of the individuals (8-20) were bulked to create survivor and nonsurvivor DNA pools from each population and location. The DNA pools were evaluated using exome capture sequencing, and allele frequencies were used to conduct statistical tests. The BSA tests revealed nine quatitative trait loci (QTL) from tetraploid populations and seven QTL from octoploid populations. Many QTL were population-specific, but some were identified in multiple populations that originated across a broad geographic landscape. Four QTL (at positions 88 Mb on chromosome 2N, 115 Mb on chromosome 5K, and 1 and 100 Mb on chromosome 9N) were potentially the most useful QTL. Markers associated with winter survivorship in this study can be used to accelerate breeding cycles of lowland switchgrass populations and should lead to improvements in adaptation within USDA hardiness zones 4 and 5.


Asunto(s)
Panicum , Sitios Genéticos , Genotipo , Panicum/genética , Fitomejoramiento , Supervivencia
3.
G3 (Bethesda) ; 9(6): 1921-1931, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30971392

RESUMEN

The lowland ecotype of switchgrass has generated considerable interest because of its higher biomass yield and late flowering characteristics compared to the upland ecotype. However, lowland ecotypes planted in northern latitudes exhibit very low winter survival. Implementation of genomic selection could potentially enhance switchgrass breeding for winter survival by reducing generation time while eliminating the dependence on weather. The objectives of this study were to assess the potential of genomic selection for winter survival in lowland switchgrass by combining multiple populations in the training set and applying the selected model in two independent testing datasets for validation. Marker data were generated using exome capture sequencing. Validation was conducted using (1) indirect indicators of winter adaptation based on geographic and climatic variables of accessions from different source locations and (2) winter survival estimates of the phenotype. The prediction accuracies were significantly higher when the training dataset comprising all populations was used in fivefold cross validation but its application was not useful in the independent validation dataset. Nevertheless, modeling for population heterogeneity improved the prediction accuracy to some extent but the genetic relationship between the training and validation populations was found to be more influential. The predicted winter survival of lowland switchgrass indicated latitudinal and longitudinal variability, with the northeast USA the region for most cold tolerant lowland populations. Our results suggested that GS could provide valuable opportunities for improving winter survival and accelerate the lowland switchgrass breeding programs toward the development of cold tolerant cultivars suitable for northern latitudes.


Asunto(s)
Ecosistema , Genoma de Planta , Genómica , Panicum/genética , Estaciones del Año , Exoma , Genómica/métodos , Genotipo , Geografía , Modelos Teóricos , Fenotipo , Reproducibilidad de los Resultados , Estados Unidos
4.
Front Plant Sci ; 10: 372, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984223

RESUMEN

Low-temperature related abiotic stress is an important factor affecting winter survival in lowland switchgrass when grown in northern latitudes in the United States. A better understanding of the genetic architecture of freezing tolerance in switchgrass will aid the development of lowland switchgrass cultivars with improved winter survival. The objectives of this study were to conduct a freezing tolerance assessment, generate a genetic map using single nucleotide polymorphism (SNP) markers, and identify QTL (quantitative trait loci) associated with freezing tolerance in a lowland × upland switchgrass population. A pseudo-F2 mapping population was generated from an initial cross between the lowland population Ellsworth and the upland cultivar Summer. The segregating progenies were screened for freezing tolerance in a controlled-environment facility. Two clonal replicates of each genotype were tested at six different treatment temperatures ranging from -15 to -5°C at an interval of 2°C for two time periods. Tiller emergence (days) and tiller number were recorded following the recovery of each genotype with the hypothesis that upland genotype is the source for higher tiller number and early tiller emergence. Survivorship of the pseudo-F2 population ranged from 89% at -5°C to 5% at -15°C with an average LT50 of -9.7°C. Genotype had a significant effect on all traits except tiller number at -15°C. A linkage map was constructed from bi-allelic single nucleotide polymorphism markers generated using exome capture sequencing. The final map consisted of 1618 markers and 2626 cM, with an average inter-marker distance of 1.8 cM. Six significant QTL were identified, one each on chromosomes 1K, 5K, 5N, 6K, 6N, and 9K, for the following traits: tiller number, tiller emergence days and LT50. A comparative genomics study revealed important freezing tolerance genes/proteins, such as COR47, DREB2B, zinc finger-CCCH, WRKY, GIGANTEA, HSP70, and NRT2, among others that reside within the 1.5 LOD confidence interval of the identified QTL.

5.
Front Plant Sci ; 9: 1250, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271414

RESUMEN

Switchgrass (Panicum virgatum) is a native prairie grass and valuable bio-energy crop. The physiological change from juvenile to reproductive adult can draw important resources away from growth into producing reproductive structures, thereby limiting the growth potential of early flowering plants. Delaying the flowering of switchgrass is one approach by which to increase total biomass. The objective of this research was to identify genetic variants and candidate genes for controlling heading and anthesis in segregating switchgrass populations. Four pseudo-F2 populations (two pairs of reciprocal crosses) were developed from lowland (late flowering) and upland (early flowering) ecotypes, and heading and anthesis dates of these populations were collected in Lafayette, IN and DeKalb, IL in 2015 and 2016. Across 2 years, there was a 34- and 73-day difference in heading and a 52- and 75-day difference in anthesis at the Lafayette and DeKalb locations, respectively. A total of 37,901 single nucleotide polymorphisms obtained by exome capture sequencing of the populations were used in a genome-wide association study (GWAS) that identified five significant signals at three loci for heading and two loci for anthesis. Among them, a homolog of FLOWERING LOCUS T on chromosome 5b associated with heading date was identified at the Lafayette location across 2 years. A homolog of ARABIDOPSIS PSEUDO-RESPONSE REGULATOR 5, a light modulator in the circadian clock associated with heading date was detected on chromosome 8a across locations and years. These results demonstrate that genetic variants related to floral development could lend themselves to a long-term goal of developing late flowering varieties of switchgrass with high biomass yield.

6.
Plant Genome ; 11(1)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29505643

RESUMEN

Switchgrass ( is a perennial native North American grass present in two ecotypes: upland, found primarily in the northern range of switchgrass habitats, and lowland, found largely in the southern reaches of switchgrass habitats. Previous studies focused on a diversity panel of primarily northern switchgrass, so to expand our knowledge of genetic diversity in a broader set of North American switchgrass, exome capture sequence data were generated for 632 additional, primarily lowland individuals. In total, over 37 million single nucleotide polymorphisms (SNPs) were identified and a set of 1.9 million high-confidence SNPs were obtained from 1169 individuals from 140 populations (67 upland, 65 lowland, 8 admixed) were used in downstream analyses of genetic diversity and population structure. Seven separate population groups were identified with moderate genetic differentiation [mean fixation index (Fst) estimate of 0.06] between the lowland and the upland populations. Ecotype-specific and population-specific SNPs were identified for use in germplasm evaluations. Relative to rice ( L.), maize ( L.), soybean [ (L.) Merr.], and Gaertn., analyses of nucleotide diversity revealed a high degree of genetic diversity (0.0135) across all individuals, consistent with the outcrossing mode of reproduction and the polyploidy of switchgrass. This study supports the hypothesis that repeated glaciation events, ploidy barriers, and restricted gene flow caused by flowering time differences have resulted in distinct gene pools across ecotypes and geographic regions. These data provide a resource to associate alleles with traits of interest for forage, restoration, and biofuel feedstock efforts in switchgrass.


Asunto(s)
Variación Genética , Genética de Población , Panicum/genética , Ecotipo , Exoma , Flujo Génico , Pool de Genes , Ploidias , Polimorfismo de Nucleótido Simple , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA