Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1847(3): 328-342, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25482261

RESUMEN

Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells. Integrated biomembrane integrity and metabolomic analysis provides a rapid approach for mechanistic understanding of multifactorial polycation-mediated cytotoxicity, and could form the basis for combinatorial throughput platforms for improved design and selection of safer polymeric vectors.


Asunto(s)
Membrana Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Polietileneimina/toxicidad , Transfección/métodos , Adenosina Trifosfato/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Línea Celular , Membrana Celular/metabolismo , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Homeostasis , Humanos , Cinética , Membranas Mitocondriales/metabolismo , Estructura Molecular , Peso Molecular , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Polietileneimina/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
2.
BMC Bioinformatics ; 10: 289, 2009 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-19754976

RESUMEN

BACKGROUND: The definition of a hypothetical protein is a protein that is predicted to be expressed from an open reading frame, but for which there is no experimental evidence of translation. Hypothetical proteins constitute a substantial fraction of proteomes of human as well as of other eukaryotes. With the general belief that the majority of hypothetical proteins are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of hypothetical proteins with a high probability of being expressed. RESULTS: Here, we present an in silico selection strategy where eukaryotic hypothetical proteins are sorted according to two criteria that can be reliably identified in silico: the presence of subcellular targeting signals and presence of characterized protein domains. To validate the selection strategy we applied it on a database of human hypothetical proteins dating to 2006 and compared the proteins predicted to be expressed by our selecting strategy, with their status in 2008. For the comparison we focused on mitochondrial proteins, since considerable amounts of research have focused on this field in between 2006 and 2008. Therefore, many proteins, defined as hypothetical in 2006, have later been characterized as mitochondrial. CONCLUSION: Among the total amount of human proteins hypothetical in 2006, 21% have later been experimentally characterized and 6% of those have been shown to have a role in a mitochondrial context. In contrast, among the selected hypothetical proteins from the 2006 dataset, predicted by our strategy to have a mitochondrial role, 53-62% have later been experimentally characterized, and 85% of these have actually been assigned a role in mitochondria by 2008.Therefore our in silico selection strategy can be used to select the most promising candidates for subsequent in vitro and in vivo analyses.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Bases de Datos de Proteínas , Humanos , Sistemas de Lectura Abierta , Proteoma/metabolismo , Proteómica/métodos
3.
Oncotarget ; 4(4): 584-99, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23603840

RESUMEN

Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to (V600E)BRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that (V600E)BRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes an addiction to (V600E)BRAF. Finally, the senescence response associated with inhibition of (V600E)BRAF is rescued by overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), providing direct evidence that oncogene addiction rests on a metabolic foundation.


Asunto(s)
Glucólisis/genética , Melanoma/genética , Melanoma/metabolismo , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas B-raf/genética , Apoptosis/genética , Western Blotting , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Oncogenes , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA