Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Pathol ; 236(4): 517-30, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25875424

RESUMEN

Metabolic adaptation is considered an emerging hallmark of cancer, whereby cancer cells exhibit high rates of glucose consumption with consequent lactate production. To ensure rapid efflux of lactate, most cancer cells express high levels of monocarboxylate transporters (MCTs), which therefore may constitute suitable therapeutic targets. The impact of MCT inhibition, along with the clinical impact of altered cellular metabolism during prostate cancer (PCa) initiation and progression, has not been described. Using a large cohort of human prostate tissues of different grades, in silico data, in vitro and ex vivo studies, we demonstrate the metabolic heterogeneity of PCa and its clinical relevance. We show an increased glycolytic phenotype in advanced stages of PCa and its correlation with poor prognosis. Finally, we present evidence supporting MCTs as suitable targets in PCa, affecting not only cancer cell proliferation and survival but also the expression of a number of hypoxia-inducible factor target genes associated with poor prognosis. Herein, we suggest that patients with highly glycolytic tumours have poorer outcome, supporting the notion of targeting glycolytic tumour cells in prostate cancer through the use of MCT inhibitors.


Asunto(s)
Glucólisis , Ácido Láctico/metabolismo , Terapia Molecular Dirigida , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Diseño de Fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Estadificación de Neoplasias , Fenotipo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Interferencia de ARN , Factores de Tiempo , Transfección , Carga Tumoral
2.
Hum Mol Genet ; 21(13): 2855-61, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22447512

RESUMEN

Friedreich's ataxia (FRDA) is the most common hereditary ataxia, affecting ∼3 in 100 000 individuals in Caucasian populations. It is caused by intronic GAA repeat expansions that hinder the expression of the FXN gene, resulting in defective levels of the mitochondrial protein frataxin. Sensory neurons in dorsal root ganglia (DRG) are particularly damaged by frataxin deficiency. There is no specific therapy for FRDA. Here, we show that frataxin levels can be upregulated by interferon gamma (IFNγ) in a variety of cell types, including primary cells derived from FRDA patients. IFNγ appears to act largely through a transcriptional mechanism on the FXN gene. Importantly, in vivo treatment with IFNγ increases frataxin expression in DRG neurons, prevents their pathological changes and ameliorates the sensorimotor performance in FRDA mice. These results disclose new roles for IFNγ in cellular metabolism and have direct implications for the treatment of FRDA.


Asunto(s)
Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Interferón gamma/farmacología , Interferón gamma/fisiología , Proteínas de Unión a Hierro/biosíntesis , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/patología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Células HeLa , Humanos , Interferón gamma/uso terapéutico , Proteínas de Unión a Hierro/genética , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Transcripción Genética , Activación Transcripcional , Frataxina
3.
Neurobiol Dis ; 46(1): 165-71, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22289650

RESUMEN

Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatología , Proteína 2 Homóloga a MutS/genética , Proteínas/genética , Expansión de Repetición de Trinucleótido/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Inestabilidad Genómica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Proteína 2 Homóloga a MutS/química , Proteína 3 Homóloga de MutS , Multimerización de Proteína , Proteínas/química
4.
Neurobiol Dis ; 42(3): 496-505, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21397024

RESUMEN

Friedreich ataxia (FRDA) is an inherited neurodegenerative disorder caused by GAA repeat expansion within the FXN gene, leading to epigenetic changes and heterochromatin-mediated gene silencing that result in a frataxin protein deficit. Histone deacetylase (HDAC) inhibitors, including pimelic o-aminobenzamide compounds 106, 109 and 136, have previously been shown to reverse FXN gene silencing in short-term studies of FRDA patient cells and a knock-in mouse model, but the functional consequences of such therapeutic intervention have thus far not been described. We have now investigated the long-term therapeutic effects of 106, 109 and 136 in our GAA repeat expansion mutation-containing YG8R FRDA mouse model. We show that there is no overt toxicity up to 5 months of treatment and there is amelioration of the FRDA-like disease phenotype. Thus, while the neurological deficits of this model are mild, 109 and 106 both produced an improvement of motor coordination, whereas 109 and 136 produced increased locomotor activity. All three compounds increased global histone H3 and H4 acetylation of brain tissue, but only 109 significantly increased acetylation of specific histone residues at the FXN locus. Effects on FXN mRNA expression in CNS tissues were modest, but 109 significantly increased frataxin protein expression in brain tissue. 109 also produced significant increases in brain aconitase enzyme activity, together with reduction of neuronal pathology of the dorsal root ganglia (DRG). Overall, these results support further assessment of HDAC inhibitors for treatment of Friedreich ataxia.


Asunto(s)
Ataxia de Friedreich/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Actividad Motora/efectos de los fármacos , Aconitato Hidratasa/metabolismo , Análisis de Varianza , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Western Blotting , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatología , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Actividad Motora/fisiología , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de Desempeño de Rotación con Aceleración Constante
5.
Hum Mol Genet ; 17(5): 735-46, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18045775

RESUMEN

Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, leading to reduced expression of frataxin protein. Evidence suggests that the mutation may induce epigenetic changes and heterochromatin formation, thereby impeding gene transcription. In particular, studies using FRDA patient blood and lymphoblastoid cell lines have detected increased DNA methylation of specific CpG sites upstream of the GAA repeat and histone modifications in regions flanking the GAA repeat. In this report we show that such epigenetic changes are also present in FRDA patient brain, cerebellum and heart tissues, the primary affected systems of the disorder. Bisulfite sequence analysis of the FXN flanking GAA regions reveals a shift in the FRDA DNA methylation profile, with upstream CpG sites becoming consistently hypermethylated and downstream CpG sites becoming consistently hypomethylated. We also identify differential DNA methylation at three specific CpG sites within the FXN promoter and one CpG site within exon 1. Furthermore, we show by chromatin immunoprecipitation analysis that there is overall decreased histone H3K9 acetylation together with increased H3K9 methylation of FRDA brain tissue. Further studies of brain, cerebellum and heart tissues from our GAA repeat expansion-containing FRDA YAC transgenic mice reveal comparable epigenetic changes to those detected in FRDA patient tissue. We have thus developed a mouse model that will be a valuable resource for future therapeutic studies targeting epigenetic modifications of the FXN gene to increase frataxin expression.


Asunto(s)
Encéfalo/patología , Epigénesis Genética , Ataxia de Friedreich/genética , Mutación , Miocardio/patología , Expansión de Repetición de Trinucleótido/genética , Acetilación , Animales , Estudios de Casos y Controles , Cerebelo/patología , Inmunoprecipitación de Cromatina , Islas de CpG , Metilación de ADN , Ataxia de Friedreich/patología , Perfilación de la Expresión Génica , Silenciador del Gen , Genes Recesivos , Histonas/metabolismo , Homocigoto , Humanos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , ARN Mensajero/análisis
6.
EMBO Mol Med ; 10(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29437778

RESUMEN

Genetically engineered mouse models of cancer can be used to filter genome-wide expression datasets generated from human tumours and to identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNAseq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. To identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we revealed a functional role for the kinase MELK as a driver and potential therapeutic target in prostate cancer. We found that MELK expression was required for cell survival, affected the expression of genes associated with prostate cancer progression and was associated with biochemical recurrence.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias de la Próstata/terapia , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma , Humanos , Masculino , Ratones , Naftiridinas/farmacología , Invasividad Neoplásica , Fenotipo , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especificidad de la Especie , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Estatmina/metabolismo , Transcriptoma/genética
7.
Mol Neurodegener ; 10: 22, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26059974

RESUMEN

BACKGROUND: Friedreich ataxia (FRDA) is a progressive inherited neurodegenerative disorder caused by mutation of the FXN gene, resulting in decreased frataxin expression, mitochondrial dysfunction and oxidative stress. A recent study has identified shorter telomeres in FRDA patient leukocytes as a possible disease biomarker. RESULTS: Here we aimed to investigate both telomere structure and function in FRDA cells. Our results confirmed telomere shortening in FRDA patient leukocytes and identified similar telomere shortening in FRDA patient autopsy cerebellar tissues. However, FRDA fibroblasts showed significantly longer telomeres at early passage, occurring in the absence of telomerase activity, but with activation of an alternative lengthening of telomeres (ALT)-like mechanism. These cells also showed accelerated telomere shortening as population doubling increases. Furthermore, telomere dysfunction-induced foci (TIF) analysis revealed that FRDA fibroblasts have dysfunctional telomeres. CONCLUSIONS: Our finding of dysfunctional telomeres in FRDA cells provides further insight into FRDA molecular disease mechanisms, which may have implications for future FRDA therapy.


Asunto(s)
Ataxia de Friedreich/genética , Acortamiento del Telómero , Telómero/genética , Adolescente , Adulto , Animales , División Celular , Células Cultivadas , Cerebelo/ultraestructura , Daño del ADN , Reparación del ADN , Femenino , Fibroblastos/ultraestructura , Ataxia de Friedreich/patología , Humanos , Hibridación Fluorescente in Situ , Leucocitos/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo , Recombinación Genética , Telomerasa/metabolismo , Telómero/ultraestructura , Homeostasis del Telómero/fisiología , Acortamiento del Telómero/genética , Adulto Joven
8.
Dis Model Mech ; 8(3): 225-35, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25681319

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a GAA repeat expansion mutation within intron 1 of the FXN gene, resulting in reduced levels of frataxin protein. We have previously reported the generation of human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing 90-190 GAA repeats, but the presence of multiple GAA repeats within these mice is considered suboptimal. We now describe the cellular, molecular and behavioural characterisation of a newly developed YAC transgenic FRDA mouse model, designated YG8sR, which we have shown by DNA sequencing to contain a single pure GAA repeat expansion. The founder YG8sR mouse contained 120 GAA repeats but, due to intergenerational expansion, we have now established a colony of YG8sR mice that contain ~200 GAA repeats. We show that YG8sR mice have a single copy of the FXN transgene, which is integrated at a single site as confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We have identified significant behavioural deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8sR FRDA mice compared with control Y47R and wild-type (WT) mice. We have also detected increased somatic GAA repeat instability in the brain and cerebellum of YG8sR mice, together with significantly reduced expression of FXN, FAST-1 and frataxin, and reduced aconitase activity, compared with Y47R mice. Furthermore, we have confirmed the presence of pathological vacuoles within neurons of the dorsal root ganglia (DRG) of YG8sR mice. These novel GAA-repeat-expansion-based YAC transgenic FRDA mice, which exhibit progressive FRDA-like pathology, represent an excellent model for the investigation of FRDA disease mechanisms and therapy.


Asunto(s)
Ataxia de Friedreich/genética , Expansión de Repetición de Trinucleótido/genética , Aconitato Hidratasa/metabolismo , Animales , Conducta Animal , Peso Corporal , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Ataxia de Friedreich/complicaciones , Ataxia de Friedreich/patología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Dosificación de Gen , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/patología , Fuerza de la Mano , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Transgenes , Frataxina
9.
PLoS One ; 9(9): e107416, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25198290

RESUMEN

BACKGROUND: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats), YG8R (90 and 190 GAA repeats) and YG22R (190 GAA repeats). METHODOLOGY/PRINCIPAL FINDINGS: We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R. CONCLUSIONS/SIGNIFICANCE: Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy.


Asunto(s)
Cromosomas Artificiales de Levadura/genética , Modelos Animales de Enfermedad , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Animales , Glucemia/metabolismo , Progresión de la Enfermedad , Femenino , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatología , Dosificación de Gen , Fuerza de la Mano , Resistencia a la Insulina , Proteínas de Unión a Hierro/genética , Masculino , Ratones , Ratones Transgénicos , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Transgenes/genética , Frataxina
10.
PLoS One ; 9(6): e100523, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971578

RESUMEN

BACKGROUND: Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. METHODOLOGY/PRINCIPAL FINDINGS: To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. CONCLUSIONS/SIGNIFICANCE: Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfatasas/deficiencia , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Ataxia de Friedreich/metabolismo , Inestabilidad Genómica , Células HCT116 , Humanos , Proteínas de Unión a Hierro/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Homólogo 1 de la Proteína MutL , Proteínas MutL , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Transcripción Genética , Expansión de Repetición de Trinucleótido , Frataxina
11.
Front Genet ; 5: 165, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24917884

RESUMEN

Friedreich ataxia (FRDA) is a lethal autosomal recessive neurodegenerative disorder caused primarily by a homozygous GAA repeat expansion mutation within the first intron of the FXN gene, leading to inhibition of FXN transcription and thus reduced frataxin protein expression. Recent studies have shown that epigenetic marks, comprising chemical modifications of DNA and histones, are associated with FXN gene silencing. Such epigenetic marks can be reversed, making them suitable targets for epigenetic-based therapy. Furthermore, since FRDA is caused by insufficient, but functional, frataxin protein, epigenetic-based transcriptional re-activation of the FXN gene is an attractive therapeutic option. In this review we summarize our current understanding of the epigenetic basis of FXN gene silencing and we discuss current epigenetic-based FRDA therapeutic strategies.

12.
PLoS One ; 9(2): e89488, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586819

RESUMEN

BACKGROUND: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. METHODOLOGY/PRINCIPAL FINDINGS: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. CONCLUSIONS/SIGNIFICANCE: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice.


Asunto(s)
Fibroblastos/fisiología , Ataxia de Friedreich/patología , Células-Madre Neurales/fisiología , Aconitato Hidratasa/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Metilación de ADN , Reparación de la Incompatibilidad de ADN , Modelos Animales de Enfermedad , Ataxia de Friedreich/genética , Humanos , Ratones , Ratones Transgénicos , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Cultivo Primario de Células , Factores de Transcripción/metabolismo , Transcriptoma , Expansión de Repetición de Trinucleótido
13.
Genet Res Int ; 2013: 852080, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533785

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by homozygous expansion of a GAA·TTC trinucleotide repeat within the first intron of the FXN gene, leading to reduced FXN transcription and decreased levels of frataxin protein. Recent advances in FRDA research have revealed the presence of several epigenetic modifications that are either directly or indirectly involved in this FXN gene silencing. Although epigenetic marks may be inherited from one generation to the next, modifications of DNA and histones can be reversed, indicating that they are suitable targets for epigenetic-based therapy. Unlike other trinucleotide repeat disorders, such as Huntington disease, the large expansions of GAA·TTC repeats in FRDA do not produce a change in the frataxin amino acid sequence, but they produce reduced levels of normal frataxin. Therefore, transcriptional reactivation of the FXN gene provides a good therapeutic option. The present paper will initially focus on the epigenetic changes seen in FRDA patients and their role in the silencing of FXN gene and will be concluded by considering the potential epigenetic therapies.

14.
PLoS One ; 8(9): e74956, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24023969

RESUMEN

BACKGROUND: Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, which induces epigenetic changes and FXN gene silencing. Bisulfite sequencing studies have identified 5-methylcytosine (5 mC) DNA methylation as one of the epigenetic changes that may be involved in this process. However, analysis of samples by bisulfite sequencing is a time-consuming procedure. In addition, it has recently been shown that 5-hydroxymethylcytosine (5 hmC) is also present in mammalian DNA, and bisulfite sequencing cannot distinguish between 5 hmC and 5 mC. METHODOLOGY/PRINCIPAL FINDINGS: We have developed specific MethylScreen restriction enzyme digestion and qPCR-based protocols to more rapidly quantify DNA methylation at four CpG sites in the FXN upstream GAA region. Increased DNA methylation was confirmed at all four CpG sites in both FRDA cerebellum and heart tissues. We have also analysed the DNA methylation status in FRDA cerebellum and heart tissues using an approach that enables distinction between 5 hmC and 5 mC. Our analysis reveals that the majority of DNA methylation in both FRDA and unaffected tissues actually comprises 5 hmC rather than 5 mC. We have also identified decreased occupancy of the chromatin insulator protein CTCF (CCCTC-binding factor) at the FXN 5' UTR region in the same FRDA cerebellum tissues. CONCLUSIONS/SIGNIFICANCE: Increased DNA methylation at the FXN upstream GAA region, primarily 5 hmC rather than 5 mC, and decreased CTCF occupancy at the FXN 5' UTR are associated with FRDA disease-relevant human tissues. The role of such molecular mechanisms in FRDA pathogenesis has now to be determined.


Asunto(s)
Citosina/análogos & derivados , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Sitios Genéticos , Proteínas de Unión a Hierro/genética , Proteínas Represoras/metabolismo , Regiones no Traducidas 5'/genética , 5-Metilcitosina/análogos & derivados , Adolescente , Adulto , Factor de Unión a CCCTC , Cerebelo/metabolismo , Cerebelo/patología , Citosina/metabolismo , Metilación de ADN , Ataxia de Friedreich/metabolismo , Humanos , Repeticiones de Microsatélite , Persona de Mediana Edad , Miocardio/metabolismo , Miocardio/patología , Unión Proteica , Adulto Joven , Frataxina
15.
PLoS One ; 8(2): e55940, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23418481

RESUMEN

Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. There is a correlation between expansion length, the amount of residual frataxin and the severity of disease. As the coding sequence is unaltered, pharmacological up-regulation of FXN expression may restore frataxin to therapeutic levels. To facilitate screening of compounds that modulate FXN expression in a physiologically relevant manner, we established a cellular genomic reporter assay consisting of a stable human cell line containing an FXN-EGFP fusion construct, in which the EGFP gene is fused in-frame with the entire normal human FXN gene present on a BAC clone. The cell line was used to establish a fluorometric cellular assay for use in high throughput screening (HTS) procedures. A small chemical library containing FDA-approved compounds and natural extracts was screened and analyzed. Compound hits identified by HTS were further evaluated by flow cytometry in the cellular genomic reporter assay. The effects on FXN mRNA and frataxin protein levels were measured in lymphoblast and fibroblast cell lines derived from individuals with FRDA and in a humanized GAA repeat expansion mouse model of FRDA. Compounds that were established to increase FXN gene expression and frataxin levels included several anti-cancer agents, the iron-chelator deferiprone and the phytoalexin resveratrol.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ataxia de Friedreich/tratamiento farmacológico , Proteínas de Unión a Hierro/genética , Línea Celular , Ataxia de Friedreich/genética , Biblioteca de Genes , Genes Reporteros , Genómica , Células HeLa , Humanos , Expansión de Repetición de Trinucleótido , Regulación hacia Arriba , Frataxina
16.
PLoS One ; 7(10): e47085, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071719

RESUMEN

Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)(n) sequence, likely via recognition of intrastrand hairpins by MutSß. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)(n) sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)(n) sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)(n) sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)(n) sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Expansión de Repetición de Trinucleótido , Adenosina Trifosfatasas/genética , Animales , Cerebelo/metabolismo , Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Ataxia de Friedreich/genética , Ganglios Espinales/metabolismo , Inestabilidad Genómica , Humanos , Ratones , Ratones Transgénicos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA