Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 207, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515036

RESUMEN

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS: Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS: This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.


Asunto(s)
Arachis , Ralstonia solanacearum , Arachis/genética , Arachis/microbiología , Transcriptoma , Ralstonia solanacearum/fisiología , Fitomejoramiento , Resistencia a la Enfermedad/genética , Glutatión/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
Plant Dis ; 105(4): 1177-1178, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32787658

RESUMEN

Peyronellaea arachidicola is the causal agent of peanut (Arachis hypogaea L.) web blotch. Here, we report an assembled draft genome sequence of P. arachidicola strain YY187 obtained from the symptomatic leaf of peanut in China. The genome size is 47.3 Mb, consisting of 26 contigs (N50 = 2.2 Mb) with G+C content of 56.37%. This genome will provide a valuable foundation for further research on genetics and comparative genomics of P. arachidicola.


Asunto(s)
Arachis , Ascomicetos , Ascomicetos/genética , China , Genómica , Phoma
3.
Biology (Basel) ; 12(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979167

RESUMEN

Didymella arachidicola is one of the most important fungal pathogens, causing foliar disease and leading to severe yield losses of peanuts (Arachis hypogaea L.) in China. Two main lesion phenotypes of peanut web blotch have been identified as reticulation type (R type) and blotch type (B type). As no satisfactory reference genome is available, the genomic variations and pathogenicity factors of D. arachidicola remain to be revealed. In the present study, we collected 41 D. arachidicola isolates from 26 geographic locations across China (33 for R type and 8 for B type). The chromosome-scale genome of the most virulent isolate (YY187) was assembled as a reference using PacBio and Hi-C technologies. In addition, we re-sequenced 40 isolates from different sampling sites. Genome-wide alignments showed high similarity among the genomic sequences from the 40 isolates, with an average mapping rate of 97.38%. An average of 3242 SNPs and 315 InDels were identified in the genomic variation analysis, which revealed an intraspecific polymorphism in D. arachidicola. The comparative analysis of the most and least virulent isolates generated an integrated gene set containing 512 differential genes. Moreover, 225 genes individually or simultaneously harbored hits in CAZy-base, PHI-base, DFVF, etc. Compared with the R type reference, the differential gene sets from all B type isolates identified 13 shared genes potentially related to lesion phenotype. Our results reveal the intraspecific genomic variation of D. arachidicola isolates and pathogenicity factors potentially related to different lesion phenotypes. This work sets a genomic foundation for understanding the mechanisms behind genomic diversity driving different pathogenic phenotypes of D. arachidicola.

4.
Plant Mol Biol ; 79(4-5): 375-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22581008

RESUMEN

Harpin proteins secreted by phytopathogenic bacteria have been shown to activate the plant defense pathway, which involves transduction of a hydrogen peroxide (H(2)O(2)) signal generated in the apoplast. However, the way in which harpins are recognized in the pathway and what role the apoplastic H(2)O(2) plays in plant defenses are unclear. Here, we examine whether the cellular localization of Hpa1(Xoo), a harpin protein produced by the rice bacterial leaf blight pathogen, impacts H(2)O(2) production and pathogen resistance in Arabidopsis thaliana. Transformation with the hpa1 (Xoo) gene and hpa1 (Xoo) fused to an apoplastic localization signal (shpa1 (Xoo)) generated h pa1 (Xoo)- and sh pa1 (Xoo)-expressing transgenic A . t haliana (HETAt and SHETAt) plants, respectively. Hpa1(Xoo) was associated with the apoplast in SHETAt plants but localized inside the cell in HETAt plants. In addition, Hpa1(Xoo) localization accompanied H(2)O(2) accumulation in both the apoplast and cytoplasm of SHETAt plants but only in the cytoplasm of HETAt plants. Apoplastic H(2)O(2) production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) located in the plasma membrane is a common feature of plant defenses. In SHETAt plants, H(2)O(2) was generated in apoplasts in a NOX-dependent manner but accumulated to a greater extent in the cytoplasm than in the apoplast. After being applied to the wild-type plant, Hpa1(Xoo) localized to apoplasts and stimulated H(2)O(2) production as in SHETAt plants. In both plants, inhibiting apoplastic H(2)O(2) generation abrogated both cytoplasmic H(2)O(2) accumulation and plant resistance to bacterial pathogens. These results suggest the possibility that the apoplastic H(2)O(2) is subject to a cytoplasmic translocation for participation in the pathogen defense.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Arabidopsis/genética , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico Activo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Espacio Extracelular/metabolismo , Genes Bacterianos , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidad
5.
Opt Express ; 19(14): 13675-85, 2011 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-21747523

RESUMEN

We report our observations on enhancement and suppression of spatial four-wave mixing (FWM) images and the interplay of four coexisting FWM processes in a two-level atomic system associating with three-level atomic system as comparison. The phenomenon of spatial splitting of the FWM signal has been observed in both x and y directions. Such FWM spatial splitting is induced by the enhanced cross-Kerr nonlinearity due to atomic coherence. The intensity of the spatial FWM signal can be controlled by an additional dressing field. Studies on such controllable beam splitting can be very useful in understanding spatial soliton formation and interactions, and in applications of spatial signal processing.


Asunto(s)
Luz , Modelos Teóricos , Dispersión de Radiación , Simulación por Computador
6.
PLoS One ; 14(12): e0226951, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31877189

RESUMEN

Crop plants always encounter multiple stresses in the natural environment. Here, the effects of the fungicide zinc thiazole (ZT) on propagation of Ralstonia solanacearum, a bacterial pathogen, were investigated in peanut seedlings under salt stress. Compared with water control, salt stress markedly reduced pathogen resistance in peanut seedlings. However, impaired pathogen resistance was alleviated by treatment with dimethylthiourea, a specific ROS scavenger, or ZT. Subsequently, salt stress or combined salt and pathogen treatment resulted in inhibition of photosynthesis, loss of chlorophyll and accumulation of thiobarbituric acid reactive substances, which could be reversed by ZT. In addition, ZT treatment suppressed the salt stress up-regulated Na+ content and Na+/K+ ratios in peanut roots. Furthermore, salt stress or combined salt and pathogen treatment impaired the activities of antioxidant (e.g. superoxide dismutase/SOD and catalase/CAT), and defense-related (e.g. phenylalanine ammonia lyase /PAL and polyphenol oxidase/PPO) enzymes, which could be rescued by addition of ZT. In contrast, only slight changes of SOD and CAT activities were observed in pathogen-infected seedlings. Similarly, activities of PAL and PPO were slightly modified by salt stress in peanut seedlings. These results suggest that the ZT-enhanced pathogen resistance can be partly attributed to the improvement of photosynthetic capacity and defense enzyme activities, and also the inhibition of Na+/K+ ratios, in this salt-stressed crop plant.


Asunto(s)
Arachis/efectos de los fármacos , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/efectos de los fármacos , Arachis/enzimología , Arachis/microbiología , Arachis/fisiología , Resistencia a la Enfermedad/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/fisiología , Estrés Salino , Tolerancia a la Sal/efectos de los fármacos , Tiazoles/farmacología , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA