Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dent Res ; 98(10): 1073-1080, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31340724

RESUMEN

The success of immune checkpoint receptor blockade has brought exciting promises for the treatment of head and neck squamous cell carcinoma (HNSCC). While patients who respond to checkpoint inhibitors tend to develop a durable response, <15% of patients with HNSCC respond to immune checkpoint inhibitors, underscoring the critical need to alleviate cancer resistance to immunotherapy. Major advances have been made to elucidate the intrinsic and adaptive resistance mechanisms to immunotherapy. Central genomic events in HNSCC have been found to possess previously unknown roles in suppressing immune sensing. Such inhibitory function affects both the innate and adaptive arms of tumor-specific immunity. While checkpoint blockade effectively reinvigorates adaptive T-cell responses, additional targeting of the oncogenic inhibitors of innate immune sensing likely informs a novel and potent strategy for immune priming. This review discusses the recent advances on the identification of key HNSCC oncogenes that impair antitumor immunity and emerging immune-priming approaches that sensitize poorly immunogenic HNSCCs to checkpoint blockade. These approaches include but are not limited to cancer vaccine systems utilizing novel type I interferon agonists as immune adjuvants, radiation, DNA damage-inducing agents, and metabolic reprogramming. The goal of these multipronged approaches is to expand tumor-specific effector T-cells, break checkpoint receptor-mediated tolerance, and metabolically support sustained T-cell activation. The translation of therapeutics that reverses oncogenic inhibition of immune sensing requires thorough characterization of the HNSCC regulators of innate immune sensors, development of additional immunocompetent HNSCC mouse models, as well as engineering of more robust immune adjuvant delivery systems. Built on the success of checkpoint blockade, validation of novel immune-priming approaches holds key promises to expand the pool of responders to immunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de Cabeza y Cuello/terapia , Inmunoterapia , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Animales , Vacunas contra el Cáncer , Reprogramación Celular , Humanos , Interferón Tipo I/agonistas , Ratones , Linfocitos T/inmunología
2.
J Dent Res ; 97(6): 627-634, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29533731

RESUMEN

The recent Food and Drug Administration's approval of monoclonal antibodies targeting immune checkpoint receptors (ICRs) for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) offers exciting promise to improve patient outcome and reduce morbidities. A favorable response to ICR blockade relies on an extensive collection of preexisting tumor-specific T cells in the tumor microenvironment (TME). ICR blockade reinvigorates exhausted CD8+ T cells and enhances immune killing. However, resistance to ICR blockade is observed in about 85% of patients with HNSCC, therefore highlighting the importance of characterizing the mechanisms underlying HNSCC immune escape and exploring combinatorial strategies to sensitize hypoimmunogenic cold HNSCC to ICR inhibition. Cancer vaccines are designed to bypass the cold TME and directly deliver cancer antigens to antigen-presenting cells (APCs); these vaccines epitomize a priming strategy to synergize with ICR inhibitors. Cancer cells are ineffective antigen presenters, and poor APC infiltration as well as the M2-like polarization in the TME further dampens antigen uptake and processing, both of which render ineffective innate and adaptive immune detection. Cancer vaccines directly activate APC and expand the tumor-specific T-cell repertoire. In addition, cancer vaccines often contain an adjuvant, which further improves APC function, promotes epitope spreading, and augments host intrinsic antitumor immunity. Thus, the vaccine-induced immune priming generates a pool of effectors whose function can be enhanced by ICR inhibitors. In this review, we summarize the major HNSCC immune evasion strategies, the ongoing effort toward improving HNSCC vaccines, and the current challenges limiting the efficacy of cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Carcinoma de Células Escamosas/prevención & control , Neoplasias de Cabeza y Cuello/prevención & control , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Carcinoma de Células Escamosas/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA