Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 615(7954): 848-853, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813960

RESUMEN

Global net land carbon uptake or net biome production (NBP) has increased during recent decades1. Whether its temporal variability and autocorrelation have changed during this period, however, remains elusive, even though an increase in both could indicate an increased potential for a destabilized carbon sink2,3. Here, we investigate the trends and controls of net terrestrial carbon uptake and its temporal variability and autocorrelation from 1981 to 2018 using two atmospheric-inversion models, the amplitude of the seasonal cycle of atmospheric CO2 concentration derived from nine monitoring stations distributed across the Pacific Ocean and dynamic global vegetation models. We find that annual NBP and its interdecadal variability increased globally whereas temporal autocorrelation decreased. We observe a separation of regions characterized by increasingly variable NBP, associated with warm regions and increasingly variable temperatures, lower and weaker positive trends in NBP and regions where NBP became stronger and less variable. Plant species richness presented a concave-down parabolic spatial relationship with NBP and its variability at the global scale whereas nitrogen deposition generally increased NBP. Increasing temperature and its increasing variability appear as the most important drivers of declining and increasingly variable NBP. Our results show increasing variability of NBP regionally that can be mostly attributed to climate change and that may point to destabilization of the coupled carbon-climate system.


Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático , Ecosistema , Mapeo Geográfico , Plantas , Carbono/análisis , Carbono/metabolismo , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Secuestro de Carbono/fisiología , Estaciones del Año , Atmósfera/química , Océano Pacífico , Temperatura , Nitrógeno/metabolismo , Plantas/clasificación , Plantas/metabolismo , Medición de Riesgo
2.
Nature ; 619(7971): 761-767, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37495878

RESUMEN

China's goal to achieve carbon (C) neutrality by 2060 requires scaling up photovoltaic (PV) and wind power from 1 to 10-15 PWh year-1 (refs. 1-5). Following the historical rates of renewable installation1, a recent high-resolution energy-system model6 and forecasts based on China's 14th Five-year Energy Development (CFED)7, however, only indicate that the capacity will reach 5-9.5 PWh year-1 by 2060. Here we show that, by individually optimizing the deployment of 3,844 new utility-scale PV and wind power plants coordinated with ultra-high-voltage (UHV) transmission and energy storage and accounting for power-load flexibility and learning dynamics, the capacity of PV and wind power can be increased from 9 PWh year-1 (corresponding to the CFED path) to 15 PWh year-1, accompanied by a reduction in the average abatement cost from US$97 to US$6 per tonne of carbon dioxide (tCO2). To achieve this, annualized investment in PV and wind power should ramp up from US$77 billion in 2020 (current level) to US$127 billion in the 2020s and further to US$426 billion year-1 in the 2050s. The large-scale deployment of PV and wind power increases income for residents in the poorest regions as co-benefits. Our results highlight the importance of upgrading power systems by building energy storage, expanding transmission capacity and adjusting power load at the demand side to reduce the economic cost of deploying PV and wind power to achieve carbon neutrality in China.

3.
Nature ; 609(7926): 299-306, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071193

RESUMEN

The potential of mitigation actions to limit global warming within 2 °C (ref. 1) might rely on the abundant supply of biomass for large-scale bioenergy with carbon capture and storage (BECCS) that is assumed to scale up markedly in the future2-5. However, the detrimental effects of climate change on crop yields may reduce the capacity of BECCS and threaten food security6-8, thus creating an unrecognized positive feedback loop on global warming. We quantified the strength of this feedback by implementing the responses of crop yields to increases in growing-season temperature, atmospheric CO2 concentration and intensity of nitrogen (N) fertilization in a compact Earth system model9. Exceeding a threshold of climate change would cause transformative changes in social-ecological systems by jeopardizing climate stability and threatening food security. If global mitigation alongside large-scale BECCS is delayed to 2060 when global warming exceeds about 2.5 °C, then the yields of agricultural residues for BECCS would be too low to meet the Paris goal of 2 °C by 2200. This risk of failure is amplified by the sustained demand for food, leading to an expansion of cropland or intensification of N fertilization to compensate for climate-induced yield losses. Our findings thereby reinforce the urgency of early mitigation, preferably by 2040, to avoid irreversible climate change and serious food crises unless other negative-emission technologies become available in the near future to compensate for the reduced capacity of BECCS.


Asunto(s)
Agricultura , Productos Agrícolas , Seguridad Alimentaria , Calentamiento Global , Agricultura/métodos , Agricultura/tendencias , Atmósfera/química , Dióxido de Carbono/análisis , Secuestro de Carbono , Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Retroalimentación , Seguridad Alimentaria/métodos , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Objetivos , Humanos , Nitrógeno/análisis , Estaciones del Año , Temperatura , Factores de Tiempo
4.
Plant J ; 114(6): 1227-1242, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36917083

RESUMEN

Anthropogenic global change is driving an increase in the frequency and intensity of drought and flood events, along with associated imbalances and limitation of several soil nutrients. In the context of an increasing human population, these impacts represent a global-scale challenge for biodiversity conservation and sustainable crop production to ensure food security. Plants have evolved strategies to enhance uptake of soil nutrients under environmental stress conditions; for example, symbioses with fungi (mycorrhization) in the rhizosphere and the release of exudates from roots. Although crop cultivation is managed for the effects of limited availability of nitrogen (N) and phosphorus (P), there is increasing evidence for limitation of plant growth and fitness because of the low availability of other soil nutrients such as the metals potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe), which may become increasingly limiting for plant productivity under global change. The roles of mycorrhizas and plant exudates on N and P uptake have been studied intensively; however, our understanding of the effects on metal nutrients is less clear and still inconsistent. Here, we review the literature on the role of mycorrhizas and root exudates in plant uptake of key nutrients (N, P, K, Ca, Mg, and Fe) in the context of potential nutrient deficiencies in crop and non-crop terrestrial ecosystems, and identify knowledge gaps for future research to improve nutrient-uptake capacity in food crop plants.


Asunto(s)
Micorrizas , Humanos , Suelo , Calcio , Ecosistema , Magnesio , Potasio , Hierro , Plantas/microbiología , Exudados y Transudados , Raíces de Plantas , Fósforo
5.
BMC Plant Biol ; 24(1): 387, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724946

RESUMEN

BACKGROUND: Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms. RESULTS: The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter. CONCLUSION: Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.


Asunto(s)
Nitrógeno , Hojas de la Planta , Hojas de la Planta/fisiología , Hojas de la Planta/genética , Nitrógeno/metabolismo , Sasa/genética , Sasa/fisiología , Poaceae/genética , Poaceae/fisiología , Fósforo/metabolismo , Filogenia , Teorema de Bayes
6.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609866

RESUMEN

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Asunto(s)
Microbiota , Fósforo , Bosque Lluvioso , Árboles , Guyana Francesa , Fosfatos , Suelo
7.
New Phytol ; 242(3): 916-934, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482544

RESUMEN

Deserts represent key carbon reservoirs, yet as these systems are threatened this has implications for biodiversity and climate change. This review focuses on how these changes affect desert ecosystems, particularly plant root systems and their impact on carbon and mineral nutrient stocks. Desert plants have diverse root architectures shaped by water acquisition strategies, affecting plant biomass and overall carbon and nutrient stocks. Climate change can disrupt desert plant communities, with droughts impacting both shallow and deep-rooted plants as groundwater levels fluctuate. Vegetation management practices, like grazing, significantly influence plant communities, soil composition, root microorganisms, biomass, and nutrient stocks. Shallow-rooted plants are particularly susceptible to climate change and human interference. To safeguard desert ecosystems, understanding root architecture and deep soil layers is crucial. Implementing strategic management practices such as reducing grazing pressure, maintaining moderate harvesting levels, and adopting moderate fertilization can help preserve plant-soil systems. Employing socio-ecological approaches for community restoration enhances carbon and nutrient retention, limits desert expansion, and reduces CO2 emissions. This review underscores the importance of investigating belowground plant processes and their role in shaping desert landscapes, emphasizing the urgent need for a comprehensive understanding of desert ecosystems.


Asunto(s)
Carbono , Ecosistema , Humanos , Biodiversidad , Plantas , Suelo , Clima Desértico , Raíces de Plantas
8.
Glob Chang Biol ; 30(4): e17292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634556

RESUMEN

Drylands, comprising semi-arid, arid, and hyperarid regions, cover approximately 41% of the Earth's land surface and have expanded considerably in recent decades. Even under more optimistic scenarios, such as limiting global temperature rise to 1.5°C by 2100, semi-arid lands may increase by up to 38%. This study provides an overview of the state-of-the-art regarding changing aridity in arid regions, with a specific focus on its effects on the accumulation and availability of carbon (C), nitrogen (N), and phosphorus (P) in plant-soil systems. Additionally, we summarized the impacts of rising aridity on biodiversity, service provisioning, and feedback effects on climate change across scales. The expansion of arid ecosystems is linked to a decline in C and nutrient stocks, plant community biomass and diversity, thereby diminishing the capacity for recovery and maintaining adequate water-use efficiency by plants and microbes. Prolonged drought led to a -3.3% reduction in soil organic carbon (SOC) content (based on 148 drought-manipulation studies), a -8.7% decrease in plant litter input, a -13.0% decline in absolute litter decomposition, and a -5.7% decrease in litter decomposition rate. Moreover, a substantial positive feedback loop with global warming exists, primarily due to increased albedo. The loss of critical ecosystem services, including food production capacity and water resources, poses a severe challenge to the inhabitants of these regions. Increased aridity reduces SOC, nutrient, and water content. Aridity expansion and intensification exacerbate socio-economic disparities between economically rich and least developed countries, with significant opportunities for improvement through substantial investments in infrastructure and technology. By 2100, half the world's landmass may become dryland, characterized by severe conditions marked by limited C, N, and P resources, water scarcity, and substantial loss of native species biodiversity. These conditions pose formidable challenges for maintaining essential services, impacting human well-being and raising complex global and regional socio-political challenges.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Carbono , Suelo/química , Temperatura , Plantas , Agua
9.
Glob Chang Biol ; 30(1): e17133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273504

RESUMEN

Both macronutrients and micronutrients are essential for tree growth and development through participating in various ecophysiological processes. However, the impact of the nutritional status of trees on their ability to withstand drought-induced mortality remains inconclusive. We thus conducted a comprehensive meta-analysis, compiling data on 11 essential nutrients from 44 publications (493 independent observations). Additionally, a field study was conducted on Pinus sylvestris L. trees with varying drought-induced vitality loss in the "Visp" forest in southern Switzerland. No consistent decline in tree nutritional status was observed during tree mortality. The meta-analysis revealed significantly lower leaf potassium (K), iron (Fe), and copper (Cu) concentrations with tree mortality. However, the field study showed no causal relationships between nutritional levels and the vitality status of trees. This discrepancy is mainly attributed to the intrinsic differences in the two types of experimental designs and the ontogenetic stages of target trees. Nutrient reductions preceding tree mortality were predominantly observed in non-field conditions, where the study was conducted on seedlings and saplings with underdeveloped root systems. It limits the nutrient uptake capacity of these young trees during drought. Furthermore, tree nutritional responses are also influenced by many variables. Specifically, (a) leaf nutrients are more susceptible to drought stress than other organs; (b) reduced tree nutrient concentrations are more prevalent in evergreen species during drought-induced mortality; (c) of all biomes, Mediterranean forests are most vulnerable to drought-induced nutrient deficiencies; (d) soil types affect the direction and extent of tree nutritional responses. We identified factors that influence the relationship between tree nutritional status and drought survival, and proposed potential early-warning indicators of impending tree mortality, for example, decreased K concentrations with declining vitality. These findings contribute to our understanding of tree responses to drought and provide practical implications for forest management strategies in the context of global change.


Asunto(s)
Pinus sylvestris , Árboles , Sequías , Bosques , Ecosistema
10.
Environ Sci Technol ; 58(13): 5821-5831, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38416534

RESUMEN

Microplastics (MPs) contamination presents a significant global environmental challenge, with its potential to influence soil carbon (C) dynamics being a crucial aspect for understanding soil C changes and global C cycling. This meta-analysis synthesizes data from 110 peer-reviewed publications to elucidate the directional, magnitude, and driving effects of MPs exposure on soil C dynamics globally. We evaluated the impacts of MPs characteristics (including type, biodegradability, size, and concentration), soil properties (initial pH and soil organic C [SOC]), and experimental conditions (such as duration and plant presence) on various soil C components. Key findings included the significant promotion of SOC, dissolved organic C, microbial biomass C, and root biomass following MPs addition to soils, while the net photosynthetic rate was reduced. No significant effects were observed on soil respiration and shoot biomass. The study highlights that the MPs concentration, along with other MPs properties and soil attributes, critically influences soil C responses. Our results demonstrate that both the nature of MPs and the soil environment interact to shape the effects on soil C cycling, providing comprehensive insights and guiding strategies for mitigating the environmental impact of MPs.


Asunto(s)
Plásticos , Suelo , Microplásticos , Fotosíntesis , Carbono , Ecosistema
11.
Environ Res ; 251(Pt 2): 118715, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490631

RESUMEN

Vegetation restoration exerts transformative effects on nutrient cycling, microbial communities, and ecosystem functions. While extensive research has been conducted on the significance of mangroves and their restoration efforts, the effectiveness of mangrove restoration in enhancing soil multifunctionality in degraded coastal wetlands remains unclear. Herein, we carried out a field experiment to explore the impacts of mangrove restoration and its chronosequence on soil microbial communities, keystone species, and soil multifunctionality, using unrestored aquaculture ponds as controls. The results revealed that mangrove restoration enhanced soil multifunctionality, with these positive effects progressively amplifying over the restoration chronosequence. Furthermore, mangrove restoration led to a substantial increase in microbial diversity and a reshaping of microbial community composition, increasing the relative abundance of dominant phyla such as Nitrospirae, Deferribacteres, and Fusobacteria. Soil multifunctionality exhibited positive correlations with microbial diversity, suggesting a link between variations in microbial diversity and soil multifunctionality. Metagenomic screening demonstrated that mangrove restoration resulted in a simultaneous increase in the abundance of nitrogen (N) related genes, such as N fixation (nirD/H/K), nitrification (pmoA-amoA/B/C), and denitrification (nirK, norB/C, narG/H, napA/B), as well as phosphorus (P)-related genes, including organic P mineralization (phnX/W, phoA/D/G, phnJ/N/P), inorganic P solubilization (gcd, ppx-gppA), and transporters (phnC/D/E, pstA/B/C/S)). The relationship between the abundance of keystone species (such as phnC/D/E) and restoration-induced changes in soil multifunctionality indicates that mangrove restoration enhances soil multifunctionality through an increase in the abundance of keystone species associated with N and P cycles. Additionally, it was observed that changes in microbial community and multifunctionality were largely associated with shifts in soil salinity. These findings demonstrate that mangrove restoration positively influences soil multifunctionality and shapes nutrient dynamics, microbial communities, and overall ecosystem resilience. As global efforts continue to focus on ecosystem restoration, understanding the complexity of mangrove-soil interactions is critical for effective nutrient management and mangrove conservation.


Asunto(s)
Microbiología del Suelo , Humedales , Suelo/química , Microbiota , Ciclo del Nitrógeno , Fósforo/metabolismo , Biodiversidad , Nitrógeno/metabolismo , Restauración y Remediación Ambiental/métodos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética
12.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380740

RESUMEN

The real-time monitoring of reductions of economic activity by containment measures and its effect on the transmission of the coronavirus (COVID-19) is a critical unanswered question. We inferred 5,642 weekly activity anomalies from the meteorology-adjusted differences in spaceborne tropospheric NO2 column concentrations after the 2020 COVID-19 outbreak relative to the baseline from 2016 to 2019. Two satellite observations reveal reincreasing economic activity associated with lifting control measures that comes together with accelerating COVID-19 cases before the winter of 2020/2021. Application of the near-real-time satellite NO2 observations produces a much better prediction of the deceleration of COVID-19 cases than applying the Oxford Government Response Tracker, the Public Health and Social Measures, or human mobility data as alternative predictors. A convergent cross-mapping suggests that economic activity reduction inferred from NO2 is a driver of case deceleration in most of the territories. This effect, however, is not linear, while further activity reductions were associated with weaker deceleration. Over the winter of 2020/2021, nearly 1 million daily COVID-19 cases could have been avoided by optimizing the timing and strength of activity reduction relative to a scenario based on the real distribution. Our study shows how satellite observations can provide surrogate data for activity reduction during the COVID-19 pandemic and monitor the effectiveness of containment to the pandemic before vaccines become widely available.


Asunto(s)
Contaminación del Aire/efectos adversos , COVID-19/epidemiología , Aprendizaje Automático , COVID-19/etiología , China/epidemiología , Humanos , Factores Socioeconómicos
13.
J Environ Manage ; 357: 120807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38569266

RESUMEN

Vegetation restoration in deserts is challenging due to these ecosystems' inherent fragility and harsh environmental conditions. One approach for active restoration involves planting native species, which can accelerate the recovery of ecosystem functions. To ensure the effectiveness of this process, carefully selecting species for planting is crucial. Generally, it is expected that a more diverse mix of species in the plantation will lead to the recovery of a greater number of ecosystem functions, especially when the selected species have complementary niche traits that facilitate maximum cooperation and minimize competition among them. In this study, we evaluated the planting of two native species from the hyper-desert of Taklamakan, China, which exhibit marked morpho-physiological differences: a phreatophytic legume (Alhagi sparsifolia) and a halophytic non-legume (Karelinia caspia). These species were grown in both monoculture and intercrop communities. Monoculture of the legume resulted in the highest biomass accumulation. Intercropping improved several ecosystem functions in the 50 cm-upper soil, particularly those related to phosphorus (P), carbon (C), and sulfur (S) concentrations, as well as soil enzyme activities. However, it also increased soil sodium (Na+) concentration and pH. Halophyte monocultures enhanced ecological functions associated with nitrogen concentrations in the upper soil and with P, S, C, and cation concentrations (K+, Ca2+, Mg2+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+), along with enzyme activities in the deep soil. It also maximized Na+ accumulation in plant biomass. In summary, we recommend legume monoculture when the primary goal is to optimize biomass accumulation. Conversely, halophyte monoculture is advisable when the objective is to extract sodium from the soil or enhance ecosystem functions in the deep soil. Intercropping the two species is recommended to maximize the ecosystem functions of the upper soil, provided there is no salinization risk. When planning restoration efforts in desert regions, it is essential to understand the impact of each species on ecosystem function and how complementary species behave when intercropped. However, these interactions are likely species- and system-specific, highlighting the need for more work to optimize solutions for different arid ecosystems.


Asunto(s)
Ecosistema , Fabaceae , Biomasa , Suelo , Verduras , Plantas Tolerantes a la Sal , Sodio , China
14.
J Environ Manage ; 353: 120288, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38335600

RESUMEN

The spatial distribution of plant, soil, and microbial carbon pools, along with their intricate interactions, presents a great challenge for the current carbon cycle research. However, it is not clear what are the characteristics of the spatial variability of these carbon pools, particularly their cross-scale relationships. We investigated the cross-scale spatial variability of microbial necromass carbon (MNC), soil organic carbon (SOC) and plant biomass (PB), as well as their correlation in a tropical montane rainforest using multifractal analysis. The results showed multifractal spatial variations of MNC, SOC, and PB, demonstrating their adherence to power-law scaling. MNC, especially low MNC, exhibited stronger spatial heterogeneity and weaker evenness compared with SOC and PB. The cross-scale correlation between MNC and SOC was stronger than their correlations at the measurement scale. Furthermore, the cross-scale spatial variability of MNC and SOC exhibited stronger and more stable correlations than those with PB. Additionally, this research suggests that when SOC and PB are both low, it is advisable for reforestations to potentiate MNC formation, whereas when both SOC and PB are high some thinning can be advisable to favour MNC formation. Thus, these results support the utilization of management measures such as reforestation or thinning as nature-based solutions to regulate carbon sequestration capacity of tropical forests by affecting the correlations among various carbon pools.


Asunto(s)
Secuestro de Carbono , Bosque Lluvioso , Carbono , Suelo , Bosques
15.
New Phytol ; 240(2): 565-576, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37545200

RESUMEN

Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3°C and +7.9°C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.


Asunto(s)
Ecosistema , Tracheophyta , Suelo , Pradera , Nitrógeno/análisis , Cambio Climático , Biomasa , Plantas , Carbono
16.
New Phytol ; 238(5): 1838-1848, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891665

RESUMEN

Despite the vital role in carbon (C) sequestration and nutrient retention, variations and patterns in root C and nitrogen (N) stoichiometry of the first five root orders across woody plant species remains unclear. We compiled a dataset to explore variations and patterns of root C and N stoichiometry in the first five orders of 218 woody plant species. Across the five orders, root N concentrations were greater in deciduous, broadleaf, and arbuscular mycorrhizal species than in evergreen, coniferous species, and ectomycorrhizal association species, respectively. Contrasting trends were found for root C : N ratios. Most root branch orders showed clear latitudinal and altitudinal trends in root C and N stoichiometry. There were opposite patterns in N concentrations between latitude and altitude. Such variations were mainly driven by plant species, and climatic factors together. Our results indicate divergent C and N use strategies among plant types and convergence and divergence in the patterns of C and N stoichiometry between latitude and altitude across the first five root orders. These findings provide important data on the root economics spectrum and biogeochemical models to improve understanding and prediction of climate change effects on C and nutrient dynamics in terrestrial ecosystems.


Asunto(s)
Micorrizas , Tracheophyta , Ecosistema , Madera , Plantas , Nitrógeno , Raíces de Plantas
17.
Glob Chang Biol ; 29(8): 2067-2091, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36655298

RESUMEN

Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.


Asunto(s)
Ecosistema , Microbiota , Cambio Climático , Suelo , Microbiología del Suelo , Sequías
18.
Glob Chang Biol ; 29(1): 276-288, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181699

RESUMEN

Accelerated sea-level rise is expected to cause the salinization of freshwater wetlands, but the responses to salinity of the availability of soil phosphorus (P) and of microbial genes involved in the cycling of P remain unexplored. We conducted a field experiment to investigate the effects of salinity on P cycling by soil microbial communities and their regulatory roles on P availability in coastal freshwater and brackish wetlands. Salinity was positively correlated with P availability, with higher concentrations of labile P but lower concentrations of moderately labile P in the brackish wetland. The diversity and richness of microbial communities involved in P cycling were higher in the brackish wetland than the freshwater wetland. Salinity substantially altered the composition of the P-cycling microbial community, in which those of the brackish wetland were separated from those of the freshwater wetland. Metagenomic sequence analysis indicated that functional genes involved in the solubilization of inorganic P and the subsequent transport and regulation of P were more abundant in coastal soils. The relative abundances of most of the target genes differed between the wetlands, with higher abundances of P-solubilization (gcd and ppa) and -mineralization (phoD, phy, and ugpQ) genes and lower abundances of P-transport genes (pstB, ugpA, ugpB, ugpE, and pit) in the brackish wetland. A significant positive correlation between the concentration of labile P and the abundances of the target genes suggested that salinity may, at least in part, improve P availability by regulating the P-cycling microbial community. Our results suggest that the P-cycling microbial community abundance and P availability respond positively to moderate increases in salinity by promoting the microbial solubilization and mineralization of soil P. Changes in microbial communities and microbially mediated P cycling may represent microbial strategies to adapt to moderate salinity levels, which in turn control soil function and nutrient balance.


Asunto(s)
Microbiota , Humedales , Suelo , Salinidad , Agua Dulce
19.
Glob Chang Biol ; 29(24): 7051-7071, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37787740

RESUMEN

Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above- and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant-microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta-analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (-12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Nitrógeno/análisis , Biomasa , Plantas , Microbiología del Suelo
20.
Glob Chang Biol ; 29(2): 533-546, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36251710

RESUMEN

Microbial metabolic products play a vital role in maintaining ecosystem multifunctionality, such as soil physical structure and soil organic carbon (SOC) preservation. Afforestation is an effective strategy to restore degraded land. Glomalin-related soil proteins (GRSP) and amino sugars are regarded as stable microbial-derived C, and their distribution within soil aggregates affects soil structure stability and SOC sequestration. However, the information about how afforestation affects the microbial contribution to SOC pools within aggregates is poorly understood. We assessed the accumulation and contribution of GRSP and amino sugars within soil aggregates along a restoration chronosequence (Bare land, Eucalyptus exserta plantation, native species mixed forest, and native forest) in tropical coastal terraces. Amino sugars and GRSP concentrations increased, whereas their contributions to the SOC pool decreased along the restoration chronosequence. Although microaggregates harbored greater microbial abundances, amino sugars and GRSP concentrations were not significantly affected by aggregate sizes. Interestingly, the contributions of amino sugars and GRSP to SOC pools decreased with decreasing aggregate size which might be associated with increased accumulation of plant-derived C. However, the relative change rate of GRSP was consistently greater in all restoration chronosequences than that of amino sugars. The accumulation of GRSP and amino sugars in SOC pools was closely associated with the dynamics of soil fertility and the microbial community. Our findings suggest that GRSP accumulates faster and contributes more to SOC pools during restoration than amino sugars did which was greatly affected by aggregate sizes. Afforestation substantially enhanced soil quality with native forest comprising species sequestering more SOC than the monoculture plantation did. Such information is invaluable for improving our mechanistic understanding of microbial control over SOC preservation during degraded ecosystem restoration. Our findings also show that plantations using arbuscular mycorrhizal plants can be an effective practice to sequester more soil carbon during restoration.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/análisis , Ecosistema , Amino Azúcares , Proteínas Fúngicas/metabolismo , Secuestro de Carbono , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA