Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 149(6): 1257-68, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22682248

RESUMEN

Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.


Asunto(s)
Estrés del Retículo Endoplásmico , Transducción de Señal , Trombospondinas/metabolismo , Factor de Transcripción Activador 6/genética , Animales , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Trombospondinas/genética
2.
Nature ; 577(7790): 405-409, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31775156

RESUMEN

Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day1,2, despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biological effect3. The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischaemic injury4,5. Here we examine the mechanistic basis for cell therapy in mice after ischaemia-reperfusion injury, and find that-although heart function is enhanced-it is not associated with the production of new cardiomyocytes. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2+ and CX3CR1+ macrophages. Intracardiac injection of two distinct types of adult stem cells, cells killed by freezing and thawing or a chemical inducer of the innate immune response all induced a similar regional accumulation of CCR2+ and CX3CR1+ macrophages, and provided functional rejuvenation to the heart after ischaemia-reperfusion injury. This selective macrophage response altered the activity of cardiac fibroblasts, reduced the extracellular matrix content in the border zone and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound-healing response that rejuvenates the infarcted area of the heart.


Asunto(s)
Inmunidad Innata , Miocitos Cardíacos/inmunología , Trasplante de Células Madre , Células Madre , Animales , Diferenciación Celular , Femenino , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/trasplante , Rejuvenecimiento
3.
Proc Natl Acad Sci U S A ; 120(19): e2213696120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126682

RESUMEN

To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.


Asunto(s)
Actinas , Cardiomiopatías , Humanos , Animales , Ratones , Actinas/metabolismo , Sarcómeros/metabolismo , Estudio de Asociación del Genoma Completo , Citoesqueleto de Actina/metabolismo , Cardiomiopatías/metabolismo , Mamíferos/genética , Proteínas de Microfilamentos/metabolismo , Transactivadores/metabolismo , Tropomodulina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo
4.
Circ Res ; 127(3): 379-390, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32299299

RESUMEN

RATIONALE: Mitochondrial Ca2+ loading augments oxidative metabolism to match functional demands during times of increased work or injury. However, mitochondrial Ca2+ overload also directly causes mitochondrial rupture and cardiomyocyte death during ischemia-reperfusion injury by inducing mitochondrial permeability transition pore opening. The MCU (mitochondrial Ca2+ uniporter) mediates mitochondrial Ca2+ influx, and its activity is modulated by partner proteins in its molecular complex, including the MCUb subunit. OBJECTIVE: Here, we sought to examine the function of the MCUb subunit of the MCU-complex in regulating mitochondria Ca2+ influx dynamics, acute cardiac injury, and long-term adaptation after ischemic injury. METHODS AND RESULTS: Cardiomyocyte-specific MCUb overexpressing transgenic mice and Mcub gene-deleted (Mcub-/-) mice were generated to dissect the molecular function of this protein in the heart. We observed that MCUb protein is undetectable in the adult mouse heart at baseline, but mRNA and protein are induced after ischemia-reperfusion injury. MCUb overexpressing mice demonstrated inhibited mitochondrial Ca2+ uptake in cardiomyocytes and partial protection from ischemia-reperfusion injury by reducing mitochondrial permeability transition pore opening. Antithetically, deletion of the Mcub gene exacerbated pathological cardiac remodeling and infarct expansion after ischemic injury in association with greater mitochondrial Ca2+ uptake. Furthermore, hindlimb remote ischemic preconditioning induced MCUb expression in the heart, which was associated with decreased mitochondrial Ca2+ uptake, collectively suggesting that induction of MCUb protein in the heart is protective. Similarly, mouse embryonic fibroblasts from Mcub-/- mice were more sensitive to Ca2+ overload. CONCLUSIONS: Our studies suggest that Mcub is a protective cardiac inducible gene that reduces mitochondrial Ca2+ influx and permeability transition pore opening after ischemic injury to reduce ongoing pathological remodeling.


Asunto(s)
Calcio/metabolismo , Miembro Posterior/irrigación sanguínea , Proteínas de la Membrana/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular , Animales , Señalización del Calcio , Muerte Celular , Línea Celular , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Precondicionamiento Isquémico , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/patología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/patología
5.
J Biol Chem ; 294(22): 8918-8929, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31006653

RESUMEN

Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.


Asunto(s)
Cardiomiopatías/patología , Corazón/fisiología , Miocardio/metabolismo , Proteína que Contiene Valosina/metabolismo , Animales , Cardiomiopatías/metabolismo , Células Cultivadas , Degradación Asociada con el Retículo Endoplásmico , Laminas/metabolismo , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Proteínas Ribosómicas/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/genética
6.
Circulation ; 138(25): 2931-2939, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29991486

RESUMEN

BACKGROUND: The adult mammalian heart displays a cardiomyocyte turnover rate of ≈1%/y throughout postnatal life and after injuries such as myocardial infarction (MI), but the question of which cell types drive this low level of new cardiomyocyte formation remains contentious. Cardiac-resident stem cells marked by stem cell antigen-1 (Sca-1, gene name Ly6a) have been proposed as an important source of cardiomyocyte renewal. However, the in vivo contribution of endogenous Sca-1+ cells to the heart at baseline or after MI has not been investigated. METHODS: Here we generated Ly6a gene-targeted mice containing either a constitutive or an inducible Cre recombinase to perform genetic lineage tracing of Sca-1+ cells in vivo. RESULTS: We observed that the contribution of endogenous Sca-1+ cells to the cardiomyocyte population in the heart was <0.005% throughout all of cardiac development, with aging, or after MI. In contrast, Sca-1+ cells abundantly contributed to the cardiac vasculature in mice during physiological growth and in the post-MI heart during cardiac remodeling. Specifically, Sca-1 lineage-traced endothelial cells expanded postnatally in the mouse heart after birth and into adulthood. Moreover, pulse labeling of Sca-1+ cells with an inducible Ly6a-MerCreMer allele also revealed a preferential expansion of Sca-1 lineage-traced endothelial cells after MI injury in the mouse. CONCLUSIONS: Cardiac-resident Sca-1+ cells are not significant contributors to cardiomyocyte renewal in vivo. However, cardiac Sca-1+ cells represent a subset of vascular endothelial cells that expand postnatally with enhanced responsiveness to pathological stress in vivo.


Asunto(s)
Células Madre Adultas/fisiología , Envejecimiento/fisiología , Antígenos Ly/metabolismo , Endotelio Vascular/fisiología , Corazón/fisiología , Proteínas de la Membrana/metabolismo , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/fisiología , Animales , Antígenos Ly/genética , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Vasos Coronarios/cirugía , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Modelos Animales , Desarrollo de Músculos , Infarto del Miocardio/genética
7.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29653926

RESUMEN

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Asunto(s)
Fibronectinas/antagonistas & inhibidores , Insuficiencia Cardíaca/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miofibroblastos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrosis , Quinasa 1 de Adhesión Focal/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Integrina beta1/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Infiltración Neutrófila/efectos de los fármacos , Fosforilación , Polimerizacion , Transducción de Señal/efectos de los fármacos
8.
Circulation ; 136(6): 549-561, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28356446

RESUMEN

BACKGROUND: In the heart, acute injury induces a fibrotic healing response that generates collagen-rich scarring that is at first protective but if inappropriately sustained can worsen heart disease. The fibrotic process is initiated by cytokines, neuroendocrine effectors, and mechanical strain that promote resident fibroblast differentiation into contractile and extracellular matrix-producing myofibroblasts. The mitogen-activated protein kinase p38α (Mapk14 gene) is known to influence the cardiac injury response, but its direct role in orchestrating programmed fibroblast differentiation and fibrosis in vivo is unknown. METHODS: A conditional Mapk14 allele was used to delete the p38α encoding gene specifically in cardiac fibroblasts or myofibroblasts with 2 different tamoxifen-inducible Cre recombinase-expressing gene-targeted mouse lines. Mice were subjected to ischemic injury or chronic neurohumoral stimulation and monitored for survival, cardiac function, and fibrotic remodeling. Antithetically, mice with fibroblast-specific transgenic overexpression of activated mitogen-activated protein kinase kinase 6, a direct inducer of p38, were generated to investigate whether this pathway can directly drive myofibroblast formation and the cardiac fibrotic response. RESULTS: In mice, loss of Mapk14 blocked cardiac fibroblast differentiation into myofibroblasts and ensuing fibrosis in response to ischemic injury or chronic neurohumoral stimulation. A similar inhibition of myofibroblast formation and healing was also observed in a dermal wounding model with deletion of Mapk14. Transgenic mice with fibroblast-specific activation of mitogen-activated protein kinase kinase 6-p38 developed interstitial and perivascular fibrosis in the heart, lung, and kidney as a result of enhanced myofibroblast numbers. Mechanistic experiments show that p38 transduces cytokine and mechanical signals into myofibroblast differentiation through the transcription factor serum response factor and the signaling effector calcineurin. CONCLUSIONS: These findings suggest that signals from diverse modes of injury converge on p38α mitogen-activated protein kinase within the fibroblast to program the fibrotic response and myofibroblast formation in vivo, suggesting a novel therapeutic approach with p38 inhibitors for future clinical application.


Asunto(s)
Fibroblastos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/genética , Actinas/metabolismo , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/citología , Fibrosis , Ventrículos Cardíacos/diagnóstico por imagen , Isquemia/etiología , Isquemia/metabolismo , Isquemia/patología , Riñón/metabolismo , Riñón/patología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 14 Activada por Mitógenos/deficiencia , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/citología , Miofibroblastos/metabolismo , Transducción de Señal
9.
Hum Mol Genet ; 25(6): 1192-202, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744329

RESUMEN

Muscular dystrophy (MD) is associated with mutations in genes that stabilize the myofiber plasma membrane, such as through the dystrophin-glycoprotein complex (DGC). Instability of this complex or defects in membrane repair/integrity leads to calcium influx and myofiber necrosis leading to progressive dystrophic disease. MD pathogenesis is also associated with increased skeletal muscle protease levels and activity that could augment weakening of the sarcolemma through greater degradation of cellular attachment complexes. Here, we observed a compensatory increase in the serine protease inhibitor Serpina3n in mouse models of MD and after acute muscle tissue injury. Serpina3n muscle-specific transgenic mice were generated to model this increase in expression, which reduced the activity of select proteases in dystrophic skeletal muscle and protected muscle from both acute injury with cardiotoxin and from chronic muscle disease in the mdx or Sgcd(-/-) MD genetic backgrounds. The Serpina3n transgene mitigated muscle degeneration and fibrosis, reduced creatine kinase serum levels, restored running capacity on a treadmill and reduced muscle membrane leakiness in vivo that is characteristic of mdx and Sgcd(-/-) mice. Mechanistically, we show that increased Serpina3n promotes greater sarcolemma membrane integrity and stability in dystrophic mouse models in association with increased membrane residence of the integrins, the DGC/utrophin-glycoprotein complex of proteins and annexin A1. Hence, Serpina3n blocks endogenous increases in the activity of select skeletal muscle resident proteases during injury or dystrophic disease, which stabilizes the sarcolemma leading to less myofiber degeneration and increased regeneration. These results suggest the use of select protease inhibitors as a strategy for treating MD.


Asunto(s)
Proteínas de Fase Aguda/biosíntesis , Proteínas de Fase Aguda/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Serpinas/biosíntesis , Serpinas/genética , Proteínas de Fase Aguda/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Femenino , Integrinas/genética , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Sarcolema/metabolismo , Serpinas/metabolismo , Transgenes , Regulación hacia Arriba , Utrofina/genética , Utrofina/metabolismo
10.
J Biol Chem ; 291(19): 9920-8, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26966179

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and ß-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.


Asunto(s)
Catepsinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Fibras Musculares Esqueléticas/enzimología , Distrofia Muscular Animal/enzimología , Distrofia Muscular de Duchenne/enzimología , Animales , Citoesqueleto/enzimología , Citoesqueleto/genética , Citoesqueleto/patología , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Necrosis , Proteolisis , Sarcolema/enzimología , Sarcolema/genética , Sarcolema/patología
13.
Hum Mol Genet ; 23(14): 3706-15, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24556214

RESUMEN

Muscular dystrophy is a progressive muscle wasting disease that is thought to be initiated by unregulated Ca(2+) influx into myofibers leading to their death. Store-operated Ca(2+) entry (SOCE) through sarcolemmal Ca(2+) selective Orai1 channels in complex with STIM1 in the sarcoplasmic reticulum is one such potential disease mechanism for pathologic Ca(2+) entry. Here, we generated a mouse model of STIM1 overexpression in skeletal muscle to determine whether this type of Ca(2+) entry could induce muscular dystrophy. Myofibers from muscle-specific STIM1 transgenic mice showed a significant increase in SOCE in skeletal muscle, modeling an observed increase in the same current in dystrophic myofibers. Histological and biochemical analysis of STIM1 transgenic mice showed fulminant muscle disease characterized by myofiber necrosis, swollen mitochondria, infiltration of inflammatory cells, enhanced interstitial fibrosis and elevated serum creatine kinase levels. This dystrophic-like disease in STIM1 transgenic mice was abrogated by crossing in a transgene expressing a dominant-negative Orai1 (dnOrai1) mutant. The dnOrai1 transgene also significantly reduced the severity of muscular dystrophy in both mdx (dystrophin mutant mice) and δ-sarcoglycan-deficient (Sgcd(-/-)) mouse models of disease. Hence, Ca(2+) influx across an unstable sarcolemma due to increased activity of a STIM1-Orai1 complex is a disease determinant in muscular dystrophy, and hence, SOCE represents a potential therapeutic target.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Distrofias Musculares/patología , Proteínas de Neoplasias/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/metabolismo , Distrofia Muscular Animal , Proteína ORAI1 , Molécula de Interacción Estromal 1
14.
Hum Mol Genet ; 23(20): 5452-63, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24876160

RESUMEN

Muscular dystrophies are a group of genetic diseases that lead to muscle wasting and, in most cases, premature death. Cytokines and inflammatory factors are released during the disease process where they promote deleterious signaling events that directly participate in myofiber death. Here, we show that p38α, a kinase in the greater mitogen-activated protein kinase (MAPK)-signaling network, serves as a nodal regulator of disease signaling in dystrophic muscle. Deletion of Mapk14 (p38α-encoding gene) in the skeletal muscle of mdx- (lacking dystrophin) or sgcd- (δ-sarcoglycan-encoding gene) null mice resulted in a significant reduction in pathology up to 6 months of age. We also generated MAPK kinase 6 (MKK6) muscle-specific transgenic mice to model heightened p38α disease signaling that occurs in dystrophic muscle, which resulted in severe myofiber necrosis and many hallmarks of muscular dystrophy. Mechanistically, we show that p38α directly induces myofiber death through a mitochondrial-dependent pathway involving direct phosphorylation and activation of the pro-death Bcl-2 family member Bax. Indeed, muscle-specific deletion of Bax, but not the apoptosis regulatory gene Tp53 (encoding p53), significantly reduced dystrophic pathology in the muscles of MKK6 transgenic mice. Moreover, use of a p38 MAPK pharmacologic inhibitor reduced dystrophic disease in Sgcd(-/-) mice suggesting a future therapeutic approach to delay disease.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/patología , Proteína X Asociada a bcl-2/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Sarcoglicanos/genética , Transducción de Señal , Proteína X Asociada a bcl-2/genética
15.
J Mol Cell Cardiol ; 87: 204-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26334248

RESUMEN

There are 3 protein phosphatase 1 (PP1) catalytic isoforms (α, ß and γ) encoded within the mammalian genome. These 3 gene products share ~90% amino acid homology within their catalytic domains but each has unique N- and C-termini that likely underlie distinctive subcellular localization or functionality. In this study, we assessed the effect associated with the loss of each PP1 isoform in the heart using a conditional Cre-loxP targeting approach in mice. Ppp1ca-loxP, Ppp1cb-loxP and Ppp1cc-loxP alleles were crossed with either an Nkx2.5-Cre knock-in containing allele for early embryonic deletion or a tamoxifen inducible α-myosin heavy chain (αMHC)-MerCreMer transgene for adult and cardiac-specific deletion. We determined that while deletion of Ppp1ca (PP1α) or Ppp1cc (PP1γ) had little effect on the whole heart, deletion of Ppp1cb (PP1ß) resulted in concentric remodeling of the heart, interstitial fibrosis and contractile dysregulation, using either the embryonic or adult-specific Cre-expressing alleles. However, myocytes isolated from Ppp1cb deleted hearts surprisingly showed enhanced contractility. Mechanistically we found that deletion of any of the 3 PP1 gene-encoding isoforms had no effect on phosphorylation of phospholamban, nor were Ca(2+) handling dynamics altered in adult myocytes from Ppp1cb deleted hearts. However, the loss of Ppp1cb from the heart, but not Ppp1ca or Ppp1cc, resulted in elevated phosphorylation of myofilament proteins such as myosin light chain 2 and cardiac myosin binding protein C, consistent with an enriched localization profile of this isoform to the sarcomeres. These results suggest a unique functional role for the PP1ß isoform in affecting cardiac contractile function.


Asunto(s)
Corazón/fisiología , Contracción Miocárdica/genética , Fosfoproteínas Fosfatasas/genética , Isoformas de Proteínas/genética , Citoesqueleto de Actina/metabolismo , Animales , Técnicas de Sustitución del Gen , Humanos , Ratones , Proteínas de Microfilamentos/metabolismo , Miofibrillas/genética , Miofibrillas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 2C , Sarcómeros/genética , Sarcómeros/metabolismo , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
16.
J Mol Cell Cardiol ; 87: 38-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26241845

RESUMEN

Stromal interaction molecule 1 (STIM1) is a Ca(2+) sensor that partners with Orai1 to elicit Ca(2+) entry in response to endoplasmic reticulum (ER) Ca(2+) store depletion. While store-operated Ca(2+) entry (SOCE) is important for maintaining ER Ca(2+) homeostasis in non-excitable cells, it is unclear what role it plays in the heart, although STIM1 is expressed in the heart and upregulated during disease. Here we analyzed transgenic mice with STIM1 overexpression in the heart to model the known increase of this protein in response to disease. As expected, STIM1 transgenic myocytes showed enhanced Ca(2+) entry following store depletion and partial co-localization with the type 2 ryanodine receptor (RyR2) within the sarcoplasmic reticulum (SR), as well as enrichment around the sarcolemma. STIM1 transgenic mice exhibited sudden cardiac death as early as 6weeks of age, while mice surviving past 12weeks of age developed heart failure with hypertrophy, induction of the fetal gene program, histopathology and mitochondrial structural alterations, loss of ventricular functional performance and pulmonary edema. Younger, pre-symptomatic STIM1 transgenic mice exhibited enhanced pathology following pressure overload stimulation or neurohumoral agonist infusion, compared to controls. Mechanistically, cardiac myocytes isolated from STIM1 transgenic mice displayed spontaneous Ca(2+) transients that were prevented by the SOCE blocker SKF-96365, increased L-type Ca(2+) channel (LTCC) current, and enhanced Ca(2+) spark frequency. Moreover, adult cardiac myocytes from STIM1 transgenic mice showed both increased diastolic Ca(2+) and maximal transient amplitude but no increase in total SR Ca(2+) load. Associated with this enhanced Ca(2+) profile was an increase in cardiac nuclear factor of activated T-cells (NFAT) and Ca(2+)/calmodulin-dependent kinase II (CaMKII) activity. We conclude that STIM1 has an unexpected function in the heart where it alters communication between the sarcolemma and SR resulting in greater Ca(2+) flux and a leaky SR compartment.


Asunto(s)
Canales de Calcio/biosíntesis , Calcio/metabolismo , Cardiomiopatías/genética , Retículo Sarcoplasmático/metabolismo , Animales , Canales de Calcio/genética , Señalización del Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/biosíntesis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Ratones , Ratones Transgénicos , Células Musculares/metabolismo , Células Musculares/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/patología , Molécula de Interacción Estromal 1
17.
Cell Rep ; 43(5): 114149, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678560

RESUMEN

Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor ß (TGFß)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFß-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFß-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFß-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.


Asunto(s)
Factor de Transcripción Activador 4 , Músculo Esquelético , Atrofia Muscular , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Trombospondina 1 , Factor de Crecimiento Transformador beta , Animales , Masculino , Ratones , Factor de Transcripción Activador 4/metabolismo , Autofagia , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
Sci Adv ; 9(34): eadi2767, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624892

RESUMEN

Mitochondrial permeability transition pore (MPTP) formation contributes to ischemia-reperfusion injury in the heart and several degenerative diseases, including muscular dystrophy (MD). MD is a family of genetic disorders characterized by progressive muscle necrosis and premature death. It has been proposed that the MPTP has two molecular components, the adenine nucleotide translocase (ANT) family of proteins and an unknown component that requires the chaperone cyclophilin D (CypD) to activate. This model was examined in vivo by deleting the gene encoding ANT1 (Slc25a4) or CypD (Ppif) in a δ-sarcoglycan (Sgcd) gene-deleted mouse model of MD, revealing that dystrophic mice lacking Slc25a4 were partially protected from cell death and MD pathology. Dystrophic mice lacking both Slc25a4 and Ppif together were almost completely protected from necrotic cell death and MD disease. This study provides direct evidence that ANT1 and CypD are required MPTP components governing in vivo cell death, suggesting a previously unrecognized therapeutic approach in MD and other necrotic diseases.


Asunto(s)
Distrofias Musculares , Animales , Ratones , Necrosis , Muerte Celular , Peptidil-Prolil Isomerasa F , Modelos Animales de Enfermedad
19.
Front Physiol ; 14: 1054169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733907

RESUMEN

Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.

20.
Cells ; 12(17)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37681905

RESUMEN

RATIONALE: The adult cardiac extracellular matrix (ECM) is largely comprised of type I collagen. In addition to serving as the primary structural support component of the cardiac ECM, type I collagen also provides an organizational platform for other ECM proteins, matricellular proteins, and signaling components that impact cellular stress sensing in vivo. OBJECTIVE: Here we investigated how the content and integrity of type I collagen affect cardiac structure function and response to injury. METHODS AND RESULTS: We generated and characterized Col1a2-/- mice using standard gene targeting. Col1a2-/- mice were viable, although by young adulthood their hearts showed alterations in ECM mechanical properties, as well as an unanticipated activation of cardiac fibroblasts and induction of a progressive fibrotic response. This included augmented TGFß activity, increases in fibroblast number, and progressive cardiac hypertrophy, with reduced functional performance by 9 months of age. Col1a2-loxP-targeted mice were also generated and crossed with the tamoxifen-inducible Postn-MerCreMer mice to delete the Col1a2 gene in myofibroblasts with pressure overload injury. Interestingly, while germline Col1a2-/- mice showed gradual pathologic hypertrophy and fibrosis with aging, the acute deletion of Col1a2 from activated adult myofibroblasts showed a loss of total collagen deposition with acute cardiac injury and an acute reduction in pressure overload-induce cardiac hypertrophy. However, this reduction in hypertrophy due to myofibroblast-specific Col1a2 deletion was lost after 2 and 6 weeks of pressure overload, as fibrotic deposition accumulated. CONCLUSIONS: Defective type I collagen in the heart alters the structural integrity of the ECM and leads to cardiomyopathy in adulthood, with fibroblast expansion, activation, and alternate fibrotic ECM deposition. However, acute inhibition of type I collagen production can have an anti-fibrotic and anti-hypertrophic effect.


Asunto(s)
Cardiomiopatías , Colágeno Tipo I , Animales , Ratones , Cardiomegalia/genética , Colágeno Tipo I/genética , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA